Network Basics

Contents

- TCP/IP Protocol
- Routing
- Network Hardware

TCP/IP Protocol

TCP/IP and the Internet

- o In 1969
 - ARPA funded and created the "ARPAnet" network
 o Robust, reliable, vendor-independent data communications
- o In 1975
 - Convert from experimental to operational network
 - TCP/IP begun to be developed
- o In 1983
 - The TCP/IP is adopted as Military Standards
 - ARPnet \rightarrow MILNET + ARPnet = Internet
- o In 1985
 - The NSF created the NSFnet to connect to Internet
- o In 1990
 - ARPA passed out of existence, and in 1995, the NSFnet became the primary Internet backbone network

ARPA = Advanced Research Project Agency NSF = National Science Foundation

Introduction (1)

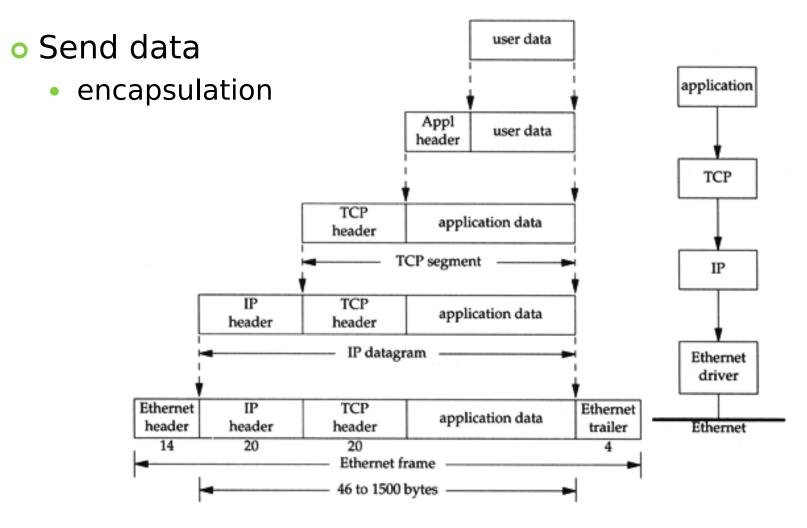
o TCP/IP

- Used to provide data communication between hosts
 - How to delivery data reliably
 - How to address remote host on the network
 - How to handle different type of hardware device
- 4 layers architecture
 - Each layer perform certain tasks
 - Each layer only need to know how to pass data to adjacent layers

Application	Telnet, FTP, e-mail, etc.
Transport	TCP, UDP
Network	IP, ICMP, IGMP
Link	device driver and interface card

Introduction (2)

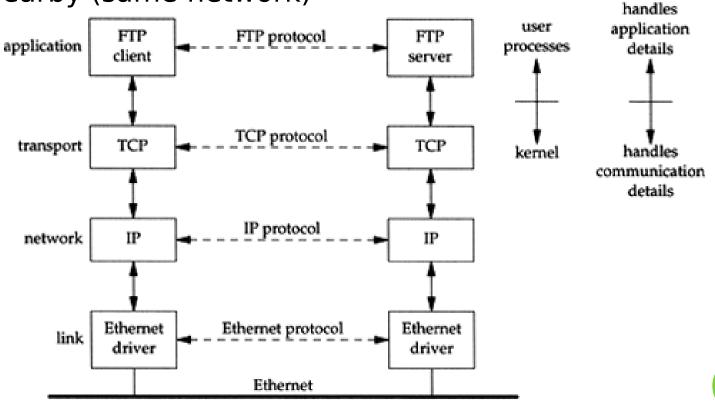
• Four layer architecture


- Link Layer (Data Link Layer)
 - Network Interface Card + Driver
 - Handle all the hardware detail of whatever type of media
- Network Layer (Internet Layer)
 - Handle the movement of packets on the network
- Transport Layer
 - Provide end-to-end data delivery services
- Application Layer
 - Handle details of the particular application

Introduction (3)

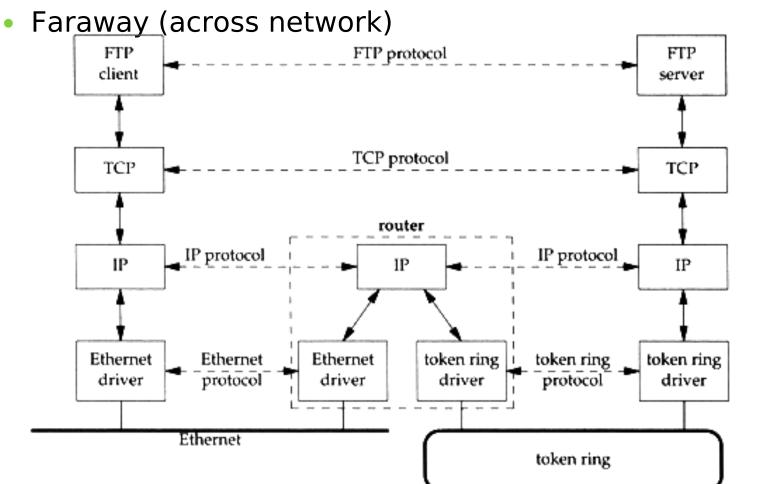
- Each layer has several protocols
 - A layer define a data communication function that may be performed by certain protocols
 - A protocol provides a service suitable to the function of that layer

Introduction (4)



8

Introduction (5)

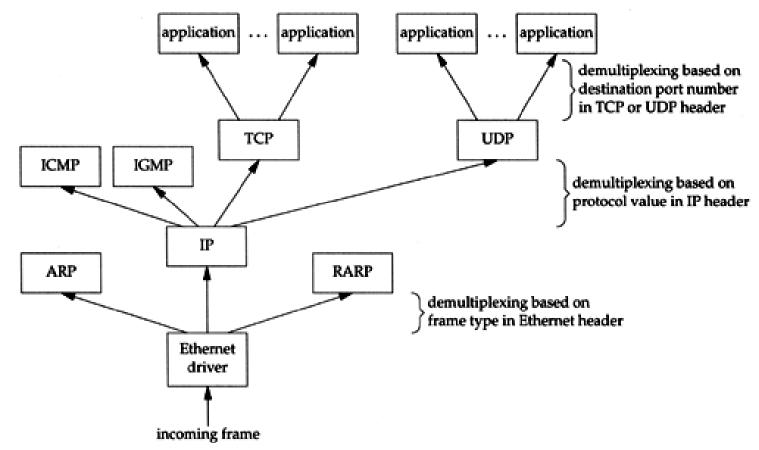

Addressing

Introduction (6)

Addressing

10

Introduction (7)


Addressing

- MAC Address
 - Media Access Control Address
 - 48-bit Network Interface Card Hardware Address
 - 24bit manufacture ID
 - 24bit serial number
 - Ex:
 - o 00:07:e9:10:e6:6b
- IP Address
 - 32-bit Internet Address (IPv4)
 - Ex:
 - 140.113.209.64
- Port
 - 16-bit uniquely identify application $(1 \sim 65536)$
 - Ex:
 - FTP port 21, ssh port 22, telnet port 23

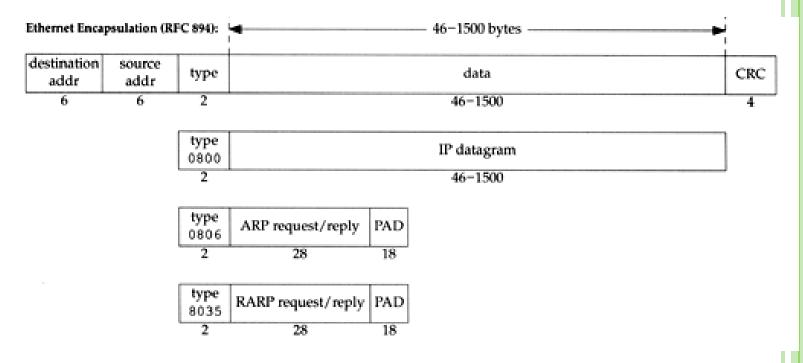
Introduction (8)

Receive Data

Demultiplexing

Link Layer

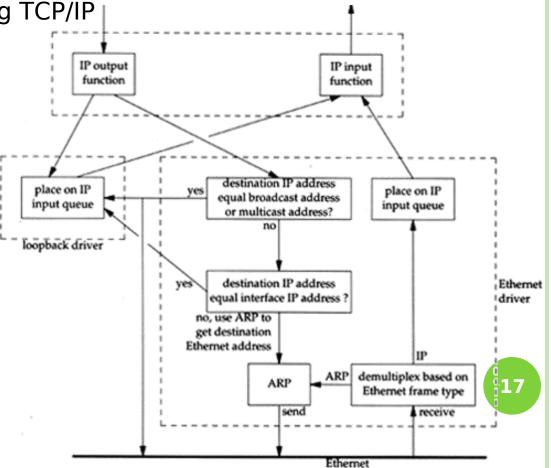
Link Layer – Introduction of Link Layer


- Purpose of the link layer
 - Send and receive IP datagram for IP module
 - ARP request and reply
 - RARP request and reply
- TCP/IP support various link layers, depending on the type of hardware used:
 - Ethernet
 - Teach in this class
 - Token Ring
 - FDDI (Fiber Distributed Data Interface)
 - Serial Line

Link Layer – Ethernet

- Features
 - Predominant form of local LAN technology used today
 - Use CSMA/CD
 Carrier Sense, Multiple Access with Collision Detection
 - Use 48bit MAC address
 - Operate at 10 Mbps
 - Fast Ethernet at 100 Mbps
 - Gigabit Ethernet at 1000Mbps
 - Ethernet frame format is defined in RFC894
 This is the actually used format in reality

Link Layer – Ethernet Frame Format


- 48bit hardware address
 - For both destination and source address
- 16bit type is used to specify the type of following data
 - 0800 \rightarrow IP datagram
 - 0806 \rightarrow ARP, 8035 \rightarrow RARP

Link Layer – Loopback Interface

Pseudo NIC

- Allow client and server on the same host to communicate with each other using TCP/IP
- IP
 - 127.0.0.1
- Hostname
 - localhost

Link Layer – MTU

- Maximum Transmission Unit
 - Limit size of payload part of Ethernet frame
 1500 bytes
 - If the IP datagram is larger than MTU,
 - IP performs "fragmentation"
- MTU of various physical device
- o Path MTU
 - Smallest MTU of any data link MTU between the two hosts

Donond on routo		
Depend on route	Network	MTU (bytes)
	Hyperchannel	65535
	16 Mbits/sec token ring (IBM)	17914
	4 Mbits/sec token ring (IEEE 802.5)	4464
	FDDI	4352
	Ethernet	1500
	IEEE 802.3/802.2	1492
	X.25	576
	Point-to-point (low delay)	296

Link Layer – MTU

x:~ -lwhsu- ifconfig

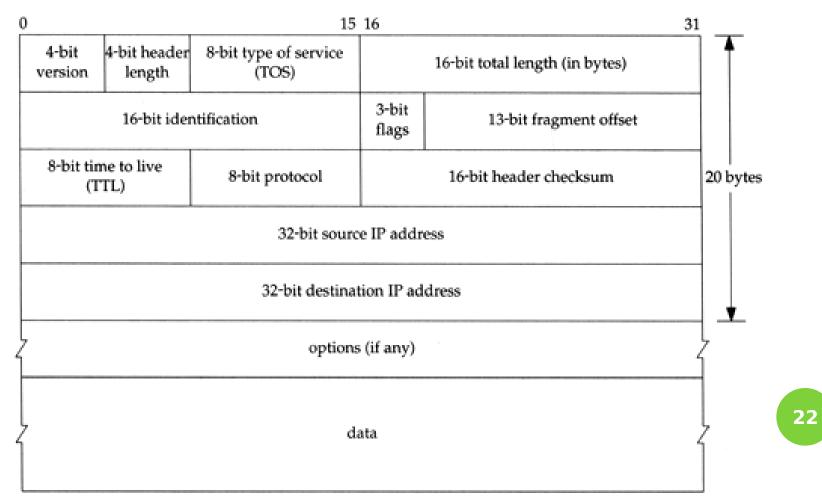
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 9000
 options=b<RXCSUM,TXCSUM,VLAN_MTU>

inet 192.168.7.1 netmask 0xfffff00 broadcast 192.168.7.255
ether 00:0e:0c:01:d7:c8

media: Ethernet autoselect (1000baseTX <full-duplex>)

status: active

fxp0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 options=b<RXCSUM,TXCSUM,VLAN_MTU>
 inet 140.113.17.24 netmask 0xffffff00 broadcast 140.113.17.255
 ether 00:02:b3:99:3e:71
 media: Ethernet autoselect (100baseTX <full-duplex>)


status: active

Introduction to Network Layer

- Unreliable and connectionless datagram delivery service
 - IP Routing
 - IP provides best effort service (unreliable)
 - IP datagram can be delivered out of order (connectionless)
- Protocols using IP
 - TCP, UDP, ICMP, IGMP

Network Layer – IP Header (1)

o 20 bytes in total length, excepts options


0						31	
	4-bit version	4-bit header length	8-bit type of service (TOS)	15 16 16-bit total length (in bytes)			T
[16-bit ider	ntification	3-bit flags	13-bit fragment offset		
	8-bit time to live (TTL) 8-bit protocol 16-bit header checksum			16-bit header checksum		20 bytes	
	32-bit source IP address						
	32-bit destination IP address						
ł	7 options (if any) 2			1			
ĺ	/ data /						

Network Layer – IP Header (2)

- Version (4bit)
 - 4 for IPv4 and 6 for IPv6
- Header length (4bit)
 - The number of 32bit words in the header (15*4=60bytes)
 - Normally, the value is 5 (no option)
- TOS-Type of Service (8bit)
 - 3bit precedence + 4bit TOS + 1bit unused
- Total length (16bit)
 - Total length of the IP datagram in bytes

Application	Minimize delay	Maximize throughput	Maximize reliability	Minimize monetary cost	Hex value
Telnet/Rlogin FTP	1	0	0	0	0x10
control	1	0	0	0	0x10
data	0	1	0	0	0x08
any bulk data	0	1	0	0	0x08
TFTP	1	0 .	0	0	0x10
SMTP					
command phase	1	0	0	0	0x10
data phase	0	1	0	0	0x08

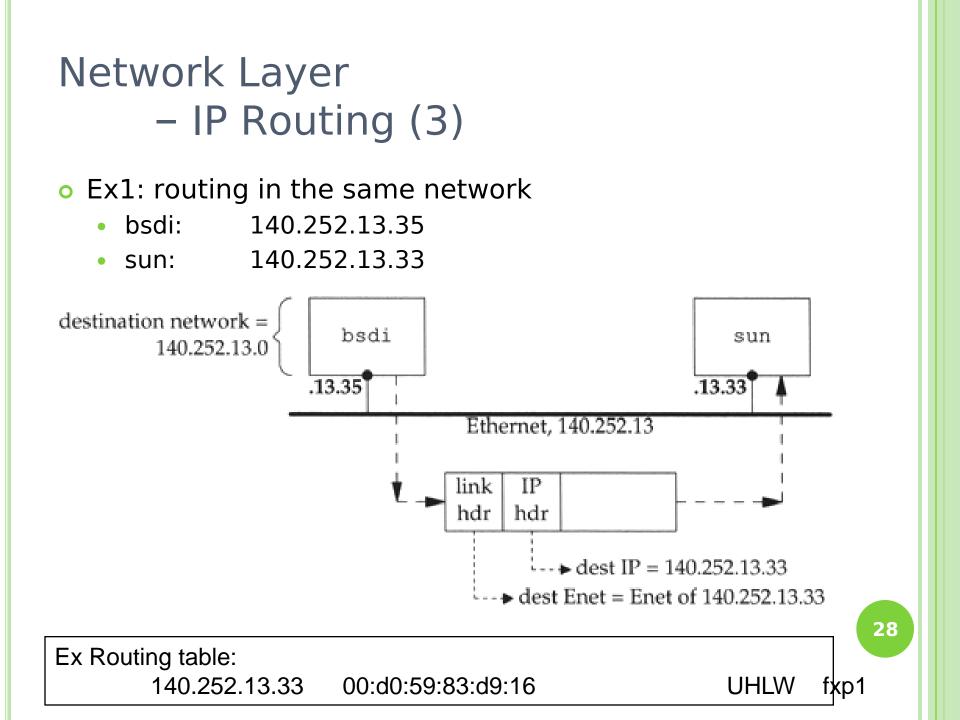
23

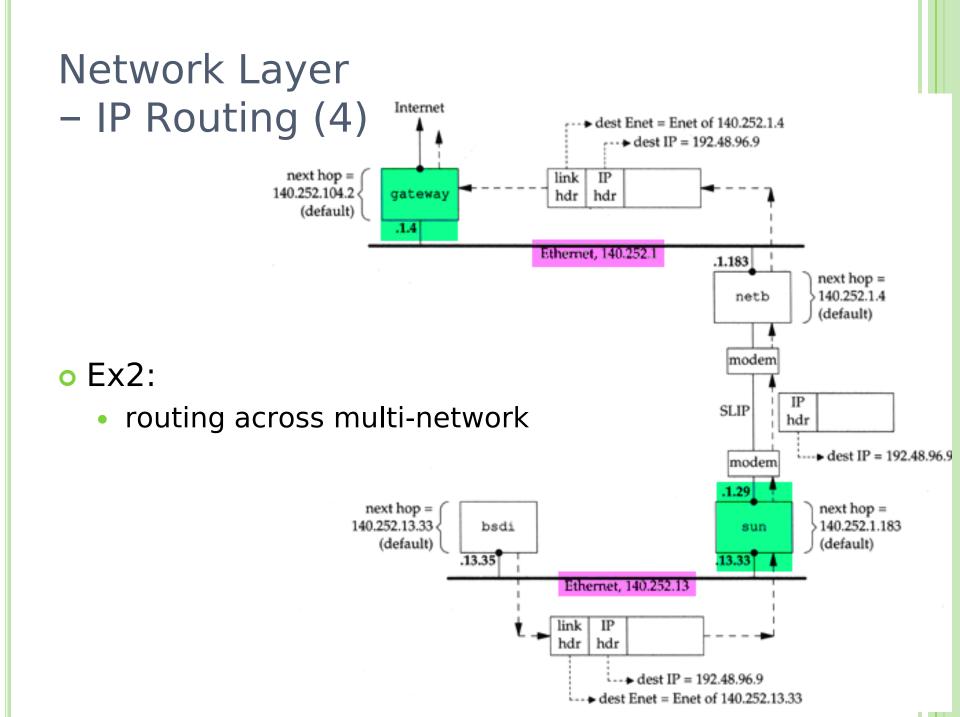
Network Layer – IP Header (3)

- Identification (16bit)
- Fragmentation offset (13bit)
- Flags (3bit)
 - All these three fields are used for fragmentation

		15	16		31	
4-bit version	4-bit header length	8-bit type of service (TOS)		16-bit total length (in bytes)		T
	16-bit ider	ntification	3-bit flags	13-bit fragment offse	t	
		8-bit protocol		16-bit header checksum		20 bytes
32-bit source IP address						
32-bit destination IP address						
options (if any)					ł	
data Z					Į	
	version 8-bit tir	version length	4401 version biblipped biblipped Biblipped TTTL biblipped Biblipped	length '(TCS) 16+bit Letratifications 348 flags 8-bit ranke is jive 9-bit produced 22-bit source UP address 32-bit source UP address	4400 version 8-bit pools 8-bit pools 16-bit total length (in bytes) 16-bit determinication 8-bit pools 8-bit pools 13-bit fragment offs 8-bit mee to live 8-bit pools 12-bit bit shadler checksum 14-bit fragment offs 8-bit mee to live 8-bit pools 12-bit fragment offs 12-bit fragment offs 22-bit destination IP address 32-bit destination IP address options (if any)	44bit version 8-bit basked (TCS) 8-bit baskel (TCS) 16-bit bask length (in bytes) 16-bit iteme bit version 3-bit (Bit product) 3-bit (Bit product) 3-bit fragment offset 8-bit iteme bit version 3-bit product) 3-bit fragment offset 3-bit fragment offset 8-bit iteme bit version 3-bit product) 3-bit fragment offset 3-bit fragment offset 8-bit iteme bit version 3-bit product) 3-bit fragment offset 3-bit fragment offset 8-bit iteme bit version 3-bit product) 3-bit fragment offset 3-bit fragment offset 8-bit iteme bit version 3-bit iteme bit product) 3-bit iteme bit product) 3-bit iteme bit product) 8-bit iteme bit version 3-bit iteme bit product) 3-bit iteme bit product) 3-bit iteme bit product)

- IP Header (4)
- o TTL (8bit)
 - Limit of next hop count of routers
- Protocol (8bit)
 - Used to demultiplex to other protocols
 - TCP, UDP, ICMP, IGMP
- Header checksum (16bit)
 - Calculated over the IP header only
 - If checksum error, IP discards the datagram and no error message is generated


Network Layer – IP Routing (1)


Difference between Host and Router

- Router forwards datagram from one of its interface to another, while host does not
- Almost every Unix system can be configured to act as a router or both
- o Router
 - IP layer has a routing table, which is used to store the information for forwarding datagram
 - When router receiving a datagram
 - If Dst. IP = my IP, demultiplex to other protocol
 - Other, forward the IP based on routing table

Network Layer – IP Routing (2)

- Routing table information
 - Destination IP
 - IP address of next-hop router or IP address of a directly connected network
 - Flags
 - Next interface
- IP routing
 - Done on a hop-by-hop basis
 - It assumes that the next-hop router is closer to the destination
 - Steps:
 - Search routing table for complete matched IP address
 - Send to next-hop router or to the directly connected NIC
 - Search routing table for matched network ID
 - Send to next-hop router or to the directly connected NIC
 - Search routing table for default route
 - Send to this default next-hop router
 - host or network unreachable

Network Layer – IP Address (1)

- o 32-bit long
 - Network part
 - Identify a logical network
 - Host part
 - Identify a machine on certain network

IP address category

Class	1 st byte ^a	Format	Comments
Α	1-126	N.H.H.H	Very early networks, or reserved for DOD
В	128-191	N.N.H.H	Large sites, usually subnetted, were hard to get
С	192-223	N.N.N.H	Easy to get, often obtained in sets
D	224-239	-	Multicast addresses, not permanently assigned
Е	240-254	-	Experimental addresses

a. The values 0 and 255 are special and are not used as the first byte of regular IP addresses. 127 is reserved for the loopback address.

 \Box Ex:

- NCTU
 - Class B address: 140.113.0.0
 - > Network ID: 140.113
 - Number of hosts: 255*255 = 65535

- Subnetting, CIDR, and Netmask (1)
- Problems of Class A or B network
 - Number of hosts is enormous
 - Hard to maintain and management
 - Solution → Subnetting
- Problems of Class C network
 - 255*255*255 number of Class C network make the size of Internet routes huge
 - Solution → Classless Inter-Domain Routing

- Subnetting, CIDR, and Netmask (2)

- Subnetting
 - Borrow some bits from network ID to extends hosts ID
 - Ex:
 - ClassB address : 140.113.0.0
 - = 256 ClassC-like IP addresses
 - in N.N.N.H subnetting method
 - 140.113.209.0 subnet
 - Benefits of subnetting
 - Reduce the routing table size of Internet's routers
 - Ex:
 - All external routers have only one entry for 140.113
 Class B network

- Subnetting, CIDR, and Netmask (3)

- Netmask
 - Specify how many bits of network-ID are used for network-ID
 - Continuous 1 bits form the network part
 - Ex:
 - o 255.255.255.0 in NCTU-CS example
 - 256 hosts available
 - o 255.255.255.248 in ADSL example
 - Only 8 hosts available
 - Shorthand notation
 - Address/prefix-length
 - Ex: 140.113.209.8/24

– Subnetting, CIDR, and Netmask (4)

• How to determine your network ID?

- Bitwise-AND IP and netmask
- Ex:

○ 140.113.214.37 & 255.255.255.0 → 140.113.214.0
○ 140.113.209.37 & 255.255.255.0 → 140.113.209.0

o 140.113.214.37 & 255.255.0.0 → 140.113.0.0
o 140.113.209.37 & 255.255.0.0 → 140.113.0.0

○ 211.23.188.78 & 255.255.255.248 → 211.23.188.72
○ 78 = 01001110

• 78 & 248= 01001110 & 11111000 =72

– Subnetting, CIDR, and Netmask (5)

• In a subnet, not all IP are available

- The first one IP → network ID
- The last one IP → broadcast address

• Ex:

Netmask 255.255.255.0	Netmask 255.255.255.252	
140.113.209.32/24	211.23.188.78/29	
 140.113.209.0 → network ID 140.113.209.255 → broadcast address 1 ~ 254, total 254 IPs are usable 	211.23.188.72 → network ID 211.23.188.79 → broadcast address 73 ~ 78, total 6 IPs are usable	

- Subnetting, CIDR, and Netmask (6)

- The smallest subnetting
 - Network portion : 30 bits
 - Host portion : 2 bits
 - → 4 hosts, but only 2 IPs are available
- ipcalc
 - /usr/ports/net-mgmt/ipcalc

knight:/us	r/ports/net-mgmt/ipcal	lc -lwhsu- ipcalc 140.113.251.21	13/255.255.255.224
Address:	140.113.251.213	10001100.01110001.11111011.110	10101
Netmask:	255.255.255.224 = 27		00000
Wildcard:	0.0.0.31	0000000.0000000.000000.000	11111
=>			
Network:	140.113.251.192/27	10001100.01110001.11111011.110	00000
HostMin:	140.113.251.193	10001100.01110001.11111011.110	00001
HostMax:	140.113.251.222	10001100.01110001.11111011.110	11110
Broadcast:	140.113.251.223	10001100.01110001.11111011.110	11111
Hosts/Net:	30	Class B	

Network Layer – Subnetting, CIDR, and Netmask (7)

• Network configuration for various lengths of netmask

Length ^a	Host bits	Hosts/net ^b	Dec. netmask	Hex netmask
/20	12	4094	255.255.240.0	0xFFFFF000
/21	11	2046	255.255.248.0	0xFFFFF800
/22	10	1022	255.255.252.0	0xFFFFFC00
/23	9	510	255.255.254.0	0xFFFFFE00
/24	8	254	255.255.255.0	0xFFFFFF00
/25	7	126	255.255.255.128	0xFFFFFF80
/26	6	62	255.255.255.192	0xFFFFFFC0
/27	5	30	255.255.255.224	0xFFFFFFE0
/28	4	14	255.255.255.240	0xFFFFFF6
/29	3	6	255.255.255.248	0xFFFFFF8
/30	2	2	255.255.255.252	0xFFFFFFFC

Network Layer

– Subnetting, CIDR, and Netmask (8)

CIDR (Classless Inter-Domain Routing)

- Use address mask instead of old address classes to determine the destination network
- CIDR requires modifications to routers and routing protocols

Need to transmit both destination address and mask

• Ex:

• We can merge two ClassC network:

203.19.68.0/24, 203.19.69.0/24 **→** 203.19.68.0/23

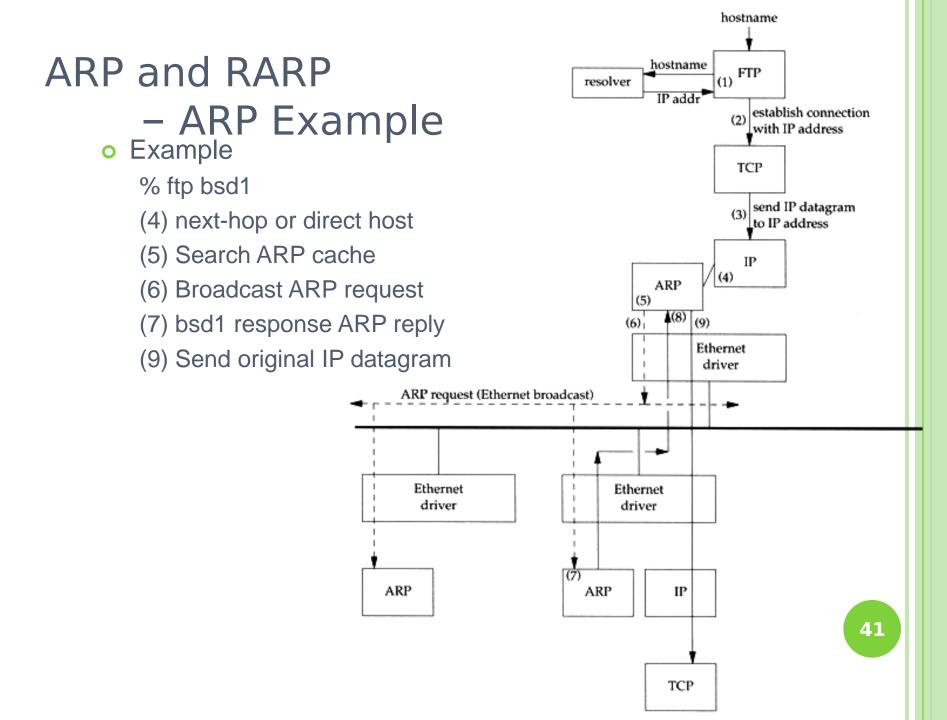
- Benefit of CIDR
 - We can allocate continuous ClassC network to organization
 - Reflect physical network topology
 - Reduce the size of routing table

ARP and RARP

Something between MAC (link layer) & IP (network layer)

ARP and RARP

• ARP– Address Resolution Protocol and RARP – Reverse ARP

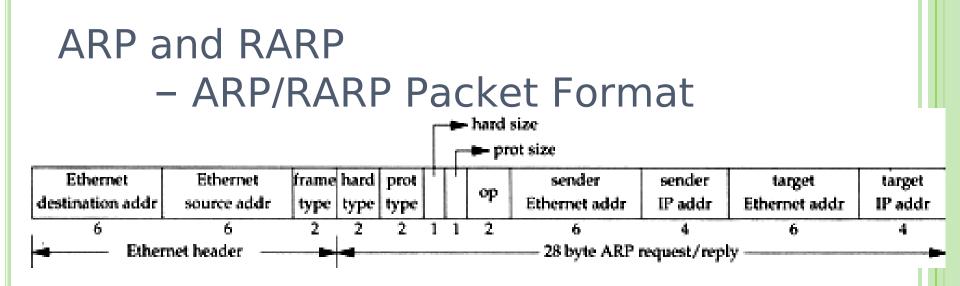

Mapping between IP and Ethernet address

32-bit Internet address

48-bit Ethernet address

- When an Ethernet frame is sent on LAN from one host to another,
 - It is the 48bit Ethernet address that determines for which interface the frame is destined

ARP and RARP – ARP Cache


Maintain recent ARP results

- come from both ARP request and reply
- expiration time
 - Complete entry = 20 minutes
 - Incomplete entry = 3 minutes
- Use arp command to see the cache
- Ex:
 - ₀ % arp –a
 - o % arp −da

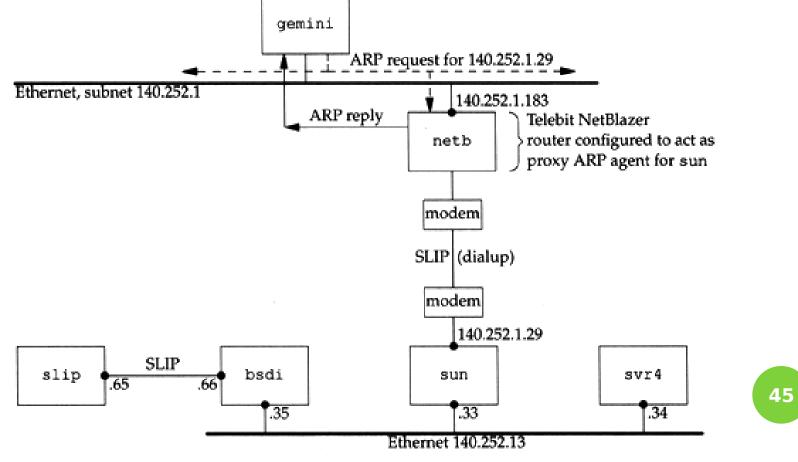
• % arp -S 140.113.235.132 00:0e:a6:94:24:6e

42

csduty /home/lwhsu] -lwhsu- arp -a
cshome (140.113.235.101) at 00:0b:cd:9e:74:61 on em0 [ethernet]
bsd1 (140.113.235.131) at 00:11:09:a0:04:74 on em0 [ethernet]
? (140.113.235.160) at (incomplete) on em0 [ethernet]

- Ethernet destination addr: all 1's (broadcast)
- Known value for IP <-> Ethernet
 - Frame type: 0x0806 for ARP, 0x8035 for RARP
 - Hardware type: type of hardware address (1 for Ethernet)
 - Protocol type: type of upper layer address (0x0800 for IP)
 - Hard size: size in bytes of hardware address (6 for Ethernet)
 - Protocol size: size in bytes of upper layer address (4 for IP)
 - Op: 1, 2, 3, 4 for ARP request, reply, RARP request, reply

ARP and RARP – Use tcpdump to see ARP


o Host 140.113.17.212 → 140.113.17.215

- Clear ARP cache of 140.113.17.212
 - % sudo arp -d 140.113.17.215
- Run tcpdump on 140.113.17.215 (00:11:d8:06:1e:81)
 - % sudo tcpdump –i sk0 –e arp
 - % sudo tcpdump –i sk0 –n –e arp
 - % sudo tcpdump –i sk0 –n –t –e arp
- On 140.113.17.212, ssh to 140.113.17.215

15:18:54.899779 00:90:96:23:8f:7d > Broadcast, ethertype ARP (0x0806), length 60: arp who-has nabsd tell zfs.cs.nctu.edu.tw 15:18:54.899792 00:11:d8:06:1e:81 > 00:90:96:23:8f:7d, ethertype ARP (0x0806), length 42: arp reply nabsd is-at 00:11:d8:06:1e:81

ARP and RARP – Proxy ARP

 Let router answer ARP request on one of its networks for a host on an<u>other of its network</u>

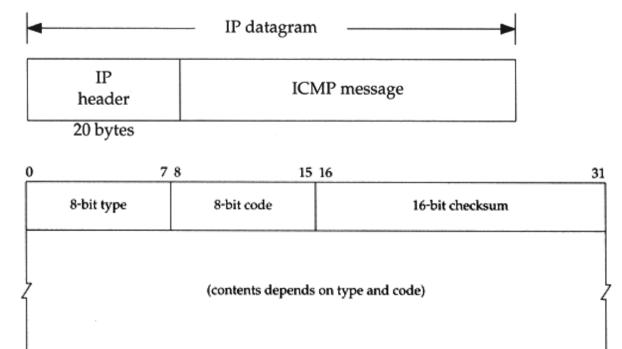
ARP and RARP – Gratuitous ARP

- Gratuitous ARP
 - The host sends an ARP request looking for its own IP
 - Provide two features
 - Used to determine whether there is another host configured with the same IP
 - Used to cause any other host to update ARP cache when changing hardware address

ARP and RARP – RARP

• Principle

- Used for the diskless system to read its hardware address from the NIC and send an RARP request to gain its IP
- RARP Server Design
 - RARP server must maintain the map from hardware address to an IP address for many host
 - Link-layer broadcast
 - This prevent most routers from forwarding an RARP request


ICMP – Internet Control Message Protocol

ICMP – Introduction

Part of the IP layer

- ICMP messages are transmitted within IP datagram
- ICMP communicates error messages and other conditions that require attention for other protocols

ICMP message format

- MESSAGE TYPE (1)

type	code	Description	Query	Error			
0	0	echo reply (Ping reply, Chapter 7) •					
3		destination unreachable:					
	0	network unreachable (Section 9.3)		•			
	1	host unreachable (Section 9.3)		٠			
	2	protocol unreachable		•			
	3	port unreachable (Section 6.5)		•			
	4	fragmentation needed but don't-fragment bit set (Section 11.6)		•			
	5	source route failed (Section 8.5)		•			
	6	destination network unknown		٠			
	7	destination host unknown		٠			
	8	source host isolated (obsolete)		•			
	9 destination network administratively prohibited						
	10	destination host administratively prohibited	-	٠			
	11	network unreachable for TOS (Section 9.3)		•			
	12	host unreachable for TOS (Section 9.3)		•			
	13	communication administratively prohibited by filtering		•			
	14	host precedence violation		•			
	15	precedence cutoff in effect		•			
4	0	source quench (elementary flow control, Section 11.11)		•			

- MESSAGE TYPE (2)

5		redirect (Section 9.5):		
	0	redirect for network		•
	1	redirect for host		•
	2	redirect for type-of-service and network		•
	3	redirect for type-of-service and host		•
8	0	echo request (Ping request, Chapter 7)	•	
9	0	router advertisement (Section 9.6)	•	
10	0	router solicitation (Section 9.6)	•	
11		time exceeded:		
	0	time-to-live equals 0 during transit (Traceroute, Chapter 8)		•
	1	time-to-live equals 0 during reassembly (Section 11.5)		•
12		parameter problem:		
	0	IP header bad (catchall error)		•
24	1	required option missing		•
13	0	timestamp request (Section 6.4)	•	
14	0	timestamp reply (Section 6.4)	•	
15	0	information request (obsolete)	•	
16	0	information reply (obsolete)	•	
17	0	address mask request (Section 6.3)	•	
18	0	address mask reply (Section 6.3)	•	

ICMP – Query Message

- Address Mask Request/Reply (1)
- Address Mask Request and Reply
 - Used for diskless system to obtain its subnet mask
 - Identifier and sequence number
 - Can be set to anything for sender to match reply with request
 - The receiver will response an ICMP reply with the subnet mask of the receiving NIC

0	8	16	31	
TYPE (17 or 18)	CODE (0)	CHECKSUM		
IDENT	IFIER	SEQUENCE NUMBER		
ADDRESS MASK				

ICMP – Query Message – Address Mask Request/Reply (2)

o Ex:

zfs [/home/lwhsu] -lwhsu- ping -M m sunl.cs.nctu.edu.tw ICMP_MASKRE0 PING sunl.cs.nctu.edu.tw (140.113.235.171): 56 data bytes 68 bytes from 140.113.235.171: icmp_seq=0 ttl=251 time=0.663 ms mask=255.255.255.0 68 bytes from 140.113.235.171: icmp_seq=1 ttl=251 time=1.018 ms mask=255.255.255.0 68 bytes from 140.113.235.171: icmp_seq=2 ttl=251 time=1.028 ms mask=255.255.255.0 68 bytes from 140.113.235.171: icmp_seq=3 ttl=251 time=1.026 ms mask=255.255.255.0 7C --- sunl.cs.nctu.edu.tw ping statistics ---4 packets transmitted, 4 packets received, 0% packet loss round-trip min/avg/max/stddev = 0.663/0.934/1.028/0.156 ms zfs [/home/lwhsu] -lwhsu- icmpquery -m sunl sunl i 0xFFFFF00

icmpquery can be found in /usr/ports/net-mgmt/icmpquery

ICMP – Query Message

- Timestamp Request/Reply (1)

Timestamp request and reply

- Allow a system to query another for the current time
- Milliseconds resolution, since midnight UTC
- Requestor

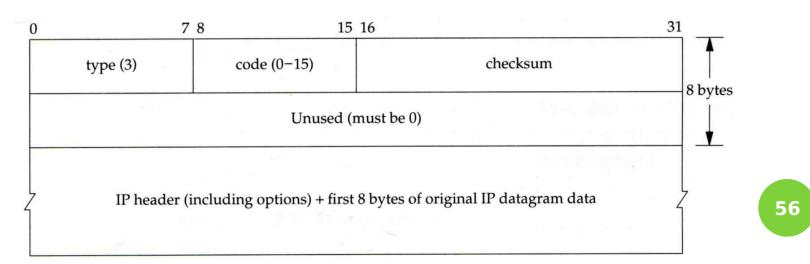
• Fill in the originate timestamp and send

- Reply system
 - Fill in the receive timestamp when it receives the request and the transmit time when it sends the reply

0	8	16	31		
TYPE (13 or 14)	CODE (0) CHECKSUM				
IDENT	IFIER	SEQUENCE NUMBER			
ORIGINATE TIMESTAMP					
RECEIVE TIMESTAMP					
TRANSMIT TIMESTAMP					

ICMP – Query Message – Timestamp Request/Reply (2)

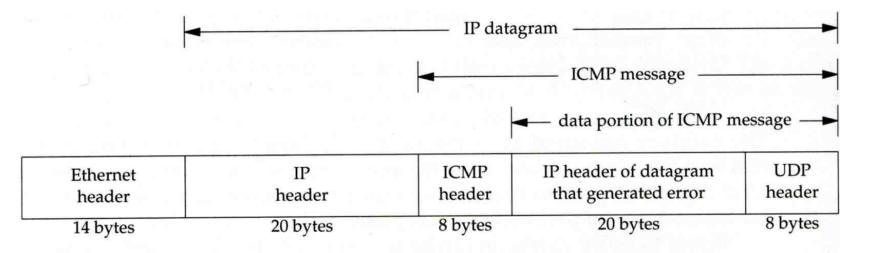
o Ex:


zfs [/home/lwhsu] -lwhsu- icmpquery -t nabsd
nabsd : 14:54:47

nabsd [/home/lwhsu] -lwhsu- sudo tcpdump -i sk0 -e icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on sk0, link-type EN10MB (Ethernet), capture size 96 bytes 14:48:24.999106 00:90:96:23:8f:7d > 00:11:d8:06:1e:81, ethertype IPv4 (0x0800), length 110: <u>id 18514 seq 0, length 76</u> zfs.csie.nctu.edu.tw > nabsd: ICMP time 14:48:24.999148 00:11:d8:06:1e:81 > 00:90:96:23:8f:7d, ethertype IPv4 (0x0800), length 110: eply id 18514 seg 0: org 06:47:46.326, nabsd > zfs.csie.nctu.edu.tw: recv 06:48:24.998, xmit 06:48:24.998, length 76 14:48:26.000598 00:90:96:23:8f:7d > 00:11:d8:06:1e:81, ethertype IPv4 (0x0800), length 110: zfs.csie.nctu.edu.tw > nabsd: ICMP time stamp query id 18514 seq 1, length 76 14:48:26.000618 00:11:d8:06:1e:81 > 00:90:96:23:8f:7d, ethertype IPv4 (0x0800), length 110: nabsd > zfs.csie.nctu.edu.tw: ICMP time stamp reply id 18514 seq 1: org 06:47:47.327, recv 06:48:25.999, xmit 06:48:25.999, length 76

ICMP – Error Message – Unreachable Error Message

o Format


- 8bytes ICMP Header
- Application-depend data portion
 - IP header
 - Let ICMP know how to interpret the 8 bytes that follow
 - o first 8bytes that followed this IP header
 - Information about who generates the error

ICMP – Error Message – Port Unreachable (1)

ICMP port unreachable

- Type = 3 , code = 3
- Host receives a UDP datagram but the destination port does not correspond to a port that some process has in use

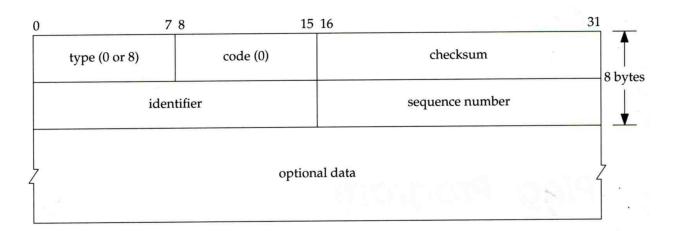
ICMP – Error Message – Port Unreachable (2)

o Ex:

Using TFTP (Trivial File Transfer Protocol)
 Original port: 69

zfs [/home/lwhsu] -lwhsu- tftp tftp> connect localhost 8888 tftp> get temp.foo Transfer timed out.

tftp>


zfs [/home/lwhsu] -lwhsu- sudo tcpdump -i lo0 tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on lo0, link-type NULL (BSD loopback), capture size 96 bytes 15:01:24.788511 IP localhost.62089 > localhost.8888: UDP, length 16 15:01:24.788554 IP localhost > localhost: ICMP localhost udp port 8888 unreachable, length 36 15:01:29.788626 IP localhost.62089 > localhost.8888: UDP, length 16 15:01:29.788691 IP localhost > localhost: ICMP localhost udp port 8888 unreachable, length 36

ICMP

- Ping Program (1)

Use ICMP to test whether another host is reachable

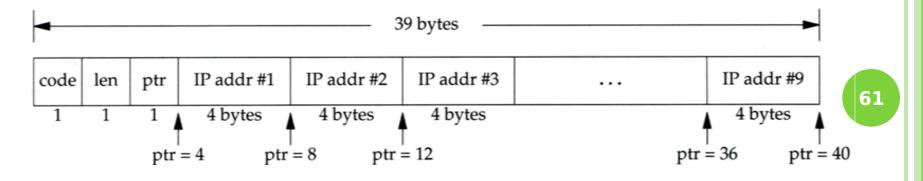
- Type 8, ICMP echo request
- Type 0, ICMP echo reply
- ICMP echo request/reply format
 - Identifier: process ID of the sending process
 - Sequence number: start with 0
 - Optional data: any optional data sent must be echoed

ICMP

– Ping Program (2)

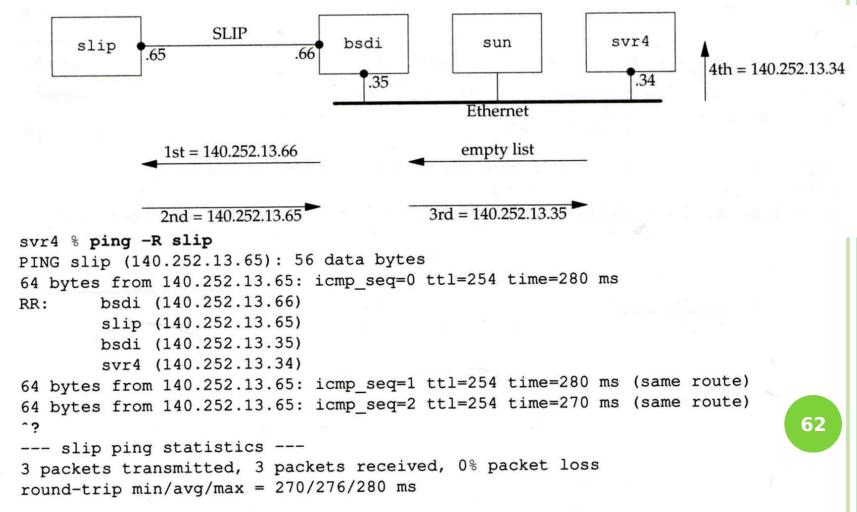
- o Ex:
 - zfs ping nabsd
 - execute "tcpdump -i sk0 -X -e icmp" on nabsd

zfs [/home/lwhsu] -lwhsu- ping nabsd PING nabsd.cs.nctu.edu.tw (140.113.17.215): 56 data bytes 64 bytes from 140.113.17.215: icmp_seq=0 ttl=64 time=0.520 ms


15:08:12.631925 00:90:96:23:8f:7d > 00:11:d8:06:1e:81, ethertype IPv4 (0x0800) zfs.csie.nctu.edu.tw > nabsd: ICMP echo request, id 56914, seq 0, length 6	length 4	98:
0x0000: 4500 0054 f688 0000 4001 4793 8c71 11d4 ET@.Gq.		
0x0010: 8c71 11d7 0800 a715 de52 0000 45f7 9f35 .qRE5		
0x0020: 000d a25a 0809 0a0b 0c0d 0e0f 1011 1213Z		
0x0030: 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223!"#		
0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 \$%&'()*+,/0123		
0×0050: 3435 45		
15:08:12.631968 00:11:d8:06:1e:81 > 00:90:96:23:8f:7d, ethertype IPv4 (0x0800)	, length	98:
nabsd > zfs.csie.nctu.edu.tw: ICMP echo reply, id 56914, seq 0, length 64		
0x0000: 4500 0054 d97d 0000 4001 649e 8c71 11d7 ET.}.@.dq.		
0x0010: 8c71 11d4 0000 af15 de52 0000 45f7 9f35 .qRE5		
0x0020: 000d a25a 0809 0a0b 0c0d 0e0f 1011 1213Z		
0x0030: 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223!"#		
0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 \$%&'()*+,/0123		
0×0050: 3435 45		

ICMP

– Ping Program (3)


To get the route that packets take to network host

- Taking use of "IP Record Route Option"
- Command: ping -R
- Cause every router that handles the datagram to add its (outgoing) IP address to a list in the options field.
- Format of Option field for IP RR Option
 - code: type of IP Option (7 for RR)
 - len: total number of bytes of the RR option
 - ptr:4 \sim 40 used to point to the next IP address
- Only 9 IP addresses can be stored
 - Limitation of IP header

ICMP – Ping Program (4)

• Example:

ICMP – Ping Program (5)

Example

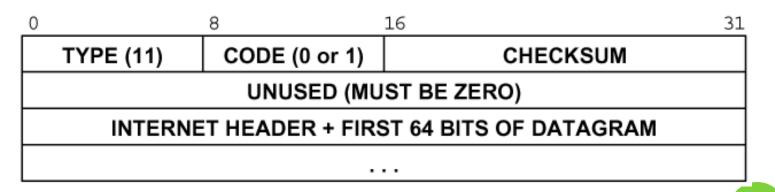
zfs [/home/lwhsu] -lwhsu- ping -R www.nctu.edu.tw PING www.nctu.edu.tw (140.113.250.5): 56 data bytes 64 bytes from 140.113.250.5: icmp_seq=0 ttl=61 time=2.361 ms RR: ProjE27-253.NCTU.edu.tw (140.113.27.253) 140.113.0.57 CC250-gw.NCTU.edu.tw (140.113.250.253) www.NCTU.edu.tw (140.113.250.5) 140.113.0.58 ProjE27-254.NCTU.edu.tw (140.113.27.254) e3rtn.csie.nctu.edu.tw (140.113.17.254) zfs.csie.nctu.edu.tw (140.113.17.212) 64 bytes from 140.113.250.5: icmp_seq=1 ttl=61 time=3.018 ms (same route)

Traceroute Program (1)

- To print the route packets take to network host
- Drawbacks of IP RR options (ping -R)
 - Not all routers have supported the IP RR option
 - Limitation of IP header length
- Background knowledge of traceroute
 - When a router receive a datagram, , it will decrement the TTL by one
 - When a router receive a datagram with TTL = 0 or 1,
 it will through away the datagram and
 sends back a "Time exceeded" ICMP message
 - Unused UDP port will generate a "port unreachable" ICMP message

Traceroute Program (2)

Operation of traceroute


- Send UDP with port > 30000, encapsulated with IP header with TTL = 1, 2, 3, ... continuously
- When router receives the datagram and TTL = 1, it returns a "Time exceed" ICMP message
- When destination host receives the datagram and TTL = 1, it returns a "Port unreachable" ICMP message

Traceroute Program (3)

Time exceed ICMP message

- Type = 11, code = 0 or 1
 - Code = 0 means TTL=0 during transit
 - Code = 1 means TTL=0 during reassembly
- First 8 bytes of datagram
 - UDP header

Traceroute Program (4)

• Ex:

- nabsd [/home/lwhsu] -lwhsu- traceroute bsd1.cs.nctu.edu.tw traceroute to bsd1.cs.nctu.edu.tw (140.113.235.131), 64 hops max, 40 byte packets 1 e3rtn.csie.nctu.edu.tw (140.113.17.254) 0.377 ms 0.365 ms 0.293 ms 2 ProjE27-254.NCTU.edu.tw (140.113.27.254) 0.390 ms 0.284 ms 0.391 ms 3 140.113.0.58 (140.113.0.58) 0.292 ms 0.282 ms 0.293 ms
 - 4 140.113.0.165 (140.113.0.165) 0.492 ms 0.385 ms 0.294 ms
- 5 bsdl.cs.nctu.edu.tw (140.113.235.131) 0.393 ms 0.281 ms 0.393 ms

nabsd [/home/lwhsu] -lwhsu- sudo tcpdump -i sk0 -t icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on sk0, link-type EN10MB (Ethernet), capture size 96 bytes IP e3rtn.csie.nctu.edu.tw > nabsd: ICMP time exceeded in-transit, length 36 IP e3rtn.csie.nctu.edu.tw > nabsd: ICMP time exceeded in-transit, length 36 IP e3rtn.csie.nctu.edu.tw > nabsd: ICMP time exceeded in-transit, length 36 IP ProjE27-254.NCTU.edu.tw > nabsd: ICMP time exceeded in-transit, length 36 IP ProjE27-254.NCTU.edu.tw > nabsd: ICMP time exceeded in-transit, length 36 IP ProjE27-254.NCTU.edu.tw > nabsd: ICMP time exceeded in-transit, length 36 IP ProjE27-254.NCTU.edu.tw > nabsd: ICMP time exceeded in-transit, length 36 IP 140.113.0.58 > nabsd: ICMP time exceeded in-transit, length 36 IP 140.113.0.58 > nabsd: ICMP time exceeded in-transit, length 36 IP 140.113.0.165 > nabsd: ICMP time exceeded in-transit, length 36 IP 140.113.0.165 > nabsd: ICMP time exceeded in-transit, length 36 IP 140.113.0.165 > nabsd: ICMP time exceeded in-transit, length 36 IP 140.113.0.165 > nabsd: ICMP time exceeded in-transit, length 36 IP 140.113.0.165 > nabsd: ICMP time exceeded in-transit, length 36 IP 140.113.0.165 > nabsd: ICMP time exceeded in-transit, length 36 IP 140.113.0.165 > nabsd: ICMP time exceeded in-transit, length 36 IP 140.113.0.165 > nabsd: ICMP time exceeded in-transit, length 36 IP 140.113.0.165 > nabsd: ICMP time exceeded in-transit, length 36 IP 140.113.0.165 > nabsd: ICMP time exceeded in-transit, length 36 IP 140.113.0.165 > nabsd: ICMP time exceeded in-transit, length 36 IP 140.113.0.165 > nabsd: ICMP time exceeded in-transit, length 36 IP 140.113.0.165 > nabsd: ICMP time exceeded in-transit, length 36 IP 140.113.0.165 > nabsd: ICMP bsdl.cs.nctu.edu.tw udp port 33447 unreachable, length 36 IP bsdl.cs.nctu.edu.tw > nabsd: ICMP bsdl.cs.nctu.edu.tw udp port 33449 unreachable, length 36 IP bsdl.cs.nctu.edu.tw > nabsd: ICMP bsdl.cs.nctu.edu.tw udp port 33449 unreachable, length 36

Traceroute Program (5)

- The router IP in traceroute is the interface that receives the datagram. (incoming IP)
 - Traceroute from left host to right host

 if1, if3
 - Traceroute from right host to left host
 if4, if2

Traceroute Program – IP Source Routing Option (1)

- Source Routing
 - Sender specifies the route
- Two forms of source routing
 - Strict source routing
 - Sender specifies the exact path that the IP datagram must follow
 - Loose source routing
 - As strict source routing, but the datagram can pass through other routers between any two addresses in the list
- Format of IP header option field
 - Code = 0x89 for strict and code = 0x83 for loose SR option

				3	9 bytes	 	
code	len	ptr	IP addr #1	IP addr #2	IP addr #3	 IP addr #9	69
1	1	1	4 bytes	4 bytes	4 bytes	4 bytes	

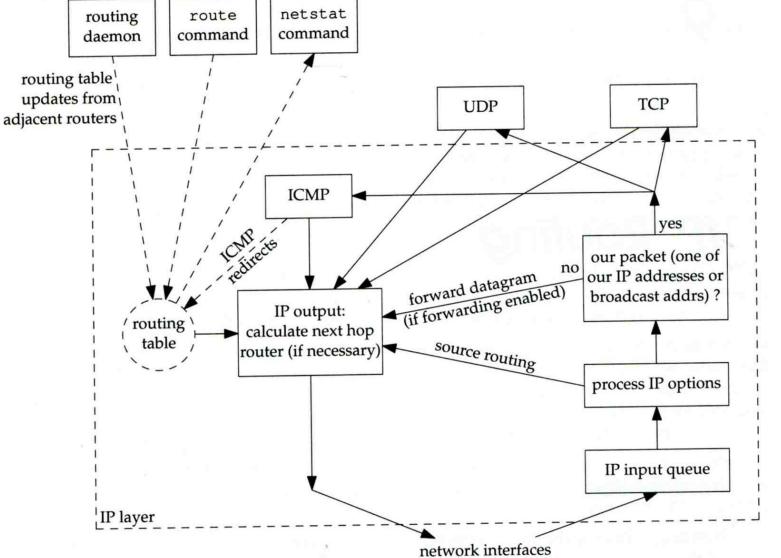
Traceroute Program – IP Source Routing Option (2)

Scenario of source routing

- Sending host
 - Remove first entry and append destination address in the final entry of the list
- Receiving router != destination
 - Loose source route, forward it as normal
- Receiving router = destination
 - Next address in the list becomes the destination
 - Change source address
 - Increment the pointer

dest = D { #R1, R2, R3 }

$$\begin{array}{|c|c|c|c|c|} \hline \bullet & \bullet \\ \hline S & \hline dest = R1 \\ \hline \{ \#R2, R3, D \} \end{array} \begin{array}{|c|c|} R1 & \hline dest = R2 \\ \hline \{ R1, \#R3, D \} \end{array} \begin{array}{|c|c|} R2 & \hline dest = R3 \\ \hline \{ R1, R2, \#D \} \end{array} \begin{array}{|c|} R3 & \hline dest = D \\ \hline \{ R1, R2, R3\# \} \end{array} \begin{array}{|c|} D \\ \hline \end{array}$$


Traceroute Program – IP Source Routing Option (3)

• Traceroute using IP loose SR option

o Ex:

nabsd [/home/lwhsu] -lwhsu- traceroute u2.nctu.edu.tw traceroute to u2.nctu.edu.tw (211.76.240.193), 64 hops max, 40 byte packets e3rtn-235 (140.113.235.254) 0.549 ms 0.434 ms <u>0.</u>337 ms .113.0.166 4.469 ms 140 108.726 ms 0.362 ms (140.113.0.166)3 0.529 ms 3.446 ms v255-194.NTCU.net (211.76.255.194)5.464 ms 4 v255-229.NTCU.net (211.76.255.229)1.406 ms ms 0.560 ms 2.017 0.520 ms h240-193.NTCU.net (211.76.240.193) 0.456 ms 0.315 ms traceroute u2.nctu.edu.tw nabsd [/home/lwhsu] -lwhsutraceroute to u2.nctu.edu.tw (211.76.240.193), 64 hops max, 48 byte packets 0.392 ms 0.365 ms e3rtn-235 3.235.254 0.543 ms (140)9.506 ms (140.113.0.166)<u>0.</u>562 ms 0.624 ms 140.113.0.166 3 (140.113.0.149)7.002 ms 1.047 ms 0 149 140 1 107 ms 4 140 .113.0.150(140.113.0.150)1.497 ms 6.653 ms 1.595 ms 5 .194 1.639 ms 7.214 ms 1.586 ms v255-194.NT CU.net 211.76.255 6 (211.76.255.229)<u>1.831 ms</u> 9.244 ms v255-229.NTCU.net 1.877 ms h240-193.NTCU.net (211.76.240.193)2.249 ms !S 1.440 ms !S 1.737 ms !S

IP ROUTING – PROCESSING IN IP LAYER

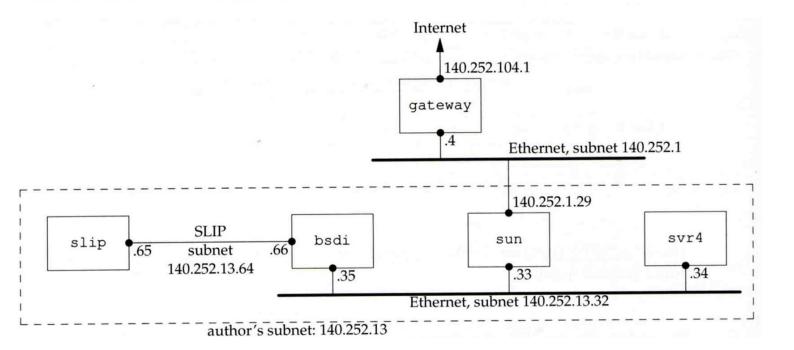
IP Routing – Routing Table (1)

- Routing Table
 - Command to list: netstat -rn
 - Flag
 - U: the route is up
 - G: the route is to a router (indirect route)
 - Indirect route: IP is the dest. IP, MAC is the router's MAC
 - H: the route is to a host (Not to a network)
 - The dest. filed is either an IP address or network address
 - Refs: number of active uses for each route
 - Use: number of packets sent through this route

nabsd [/home/lwhsu] -lwhsu- netstat -rn Routing tables								
Internet: Destination default 127.0.0.1 140.113.17/24 140.113.17.5 140.113.17.212 140.113.17.254	Gateway 140.113.17.254 127.0.0.1 link#1 00:02:b3:4d:44:c0 00:90:96:23:8f:7d 00:90:69:64:ec:00	Flags UGS UH UC UHLW UHLW UHLW	Refs 0 0 1 1 2	Use 178607 240 0 12182 14 4	Netif sk0 lo0 sk0 sk0 sk0 sk0 sk0	Expire 1058 1196 1200		

IP Routing – Routing Table (2)

o Ex:


svr4 % netstat -rn

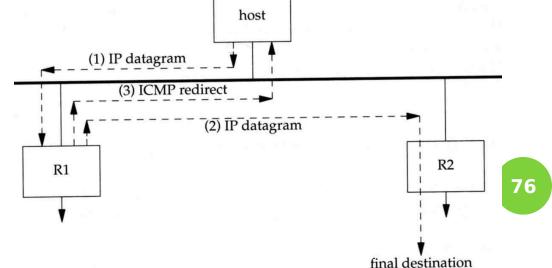
Routing tables

Destination	Gateway
140.252.13.65	140.252.13.35
127.0.0.1	127.0.0.1
default	140.252.13.33
140.252.13.32	140.252.13.34

dst. = sun
 dst. = slip
 dst. = 192.207.117.2
 dst. = svr4 or 140.252.13.34
 dst. = 127.0.0.1

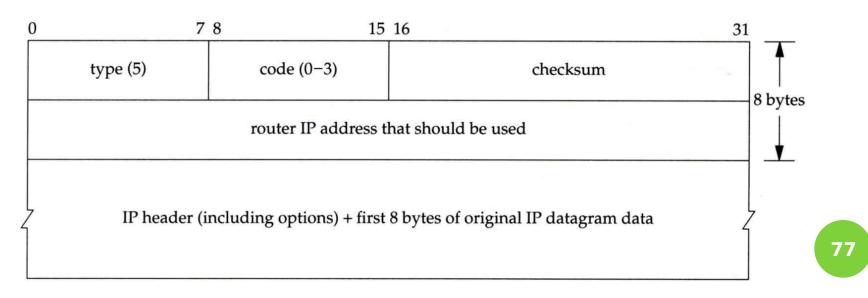

Flags	Refcnt	Use	Interfa	ce
UGH	0	0	emd0	
UH	1	0	100	loopback
UG	0	0	emd0	
U	4	25043	emd0	

No Route to Destination

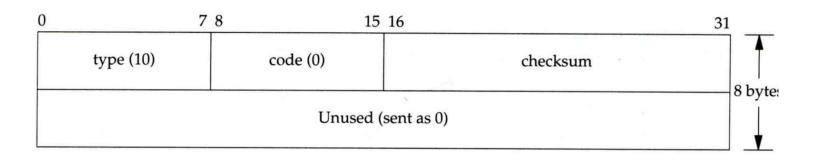

If there is no match in routing table

- If the IP datagram is generated on the host
 "host unreachable" or "network unreachable"
- If the IP datagram is being forwarded
 - ICMP "host unreachable" error message is generated and sends back to sending host
 - ICMP message
 - Type = 3, code = 0 for host unreachable
 - Type = 3, code = 1 for network unreachable

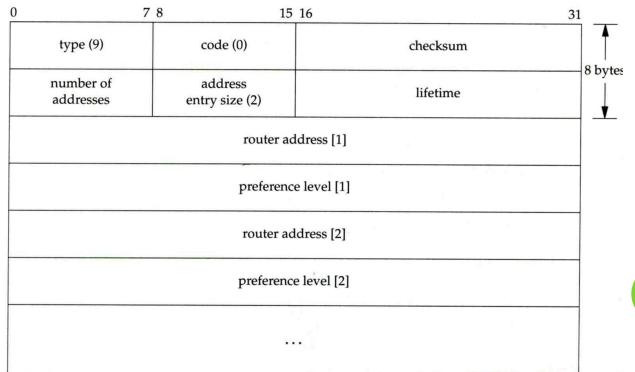
- Redirect Error Message (1)


- Concept
 - Used by router to inform the sender that the datagram should be sent to a different router
 - This will happen if the host has a choice of routers to send the packet to
 - Ex:
 - R1 found sending and receiving interface are the same

- Redirect Error Message (2)


ICMP redirect message format

- Code 0: redirect for network
- Code 1: redirect for host
- Code 2: redirect for TOS and network (RFC 1349)
- Code 3: redirect for TOS and hosts (RFC 1349)

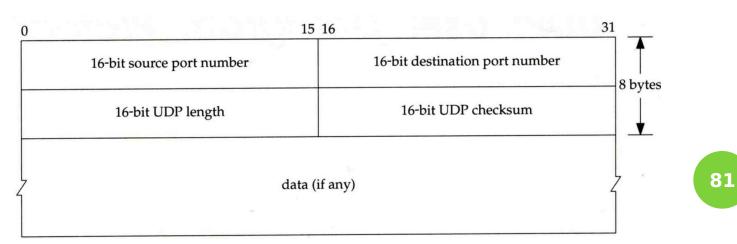

Router Discovery Messages (1)

- Dynamic update host's routing table
 - ICMP router solicitation message (懇求)
 o Host broadcast or multicast after bootstrapping
 - ICMP router advertisement message
 - Router response
 - Router periodically broadcast or multicast
- Format of ICMP router solicitation message

- Router Discovery Messages (2)

- Format of ICMP router advertisement message
 - Router address
 - Must be one of the router's IP address
 - Preference level
 - Preference as a default router address

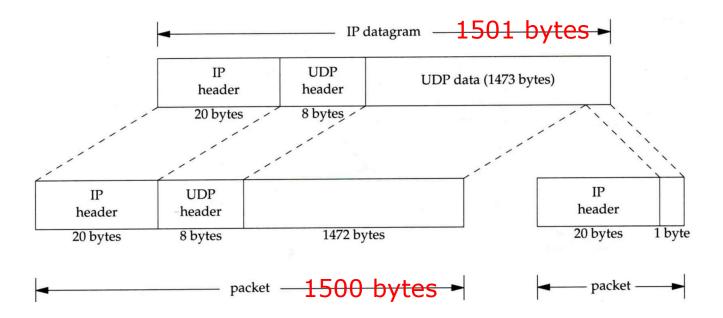
UDP – User Datagram Protocol


UDP

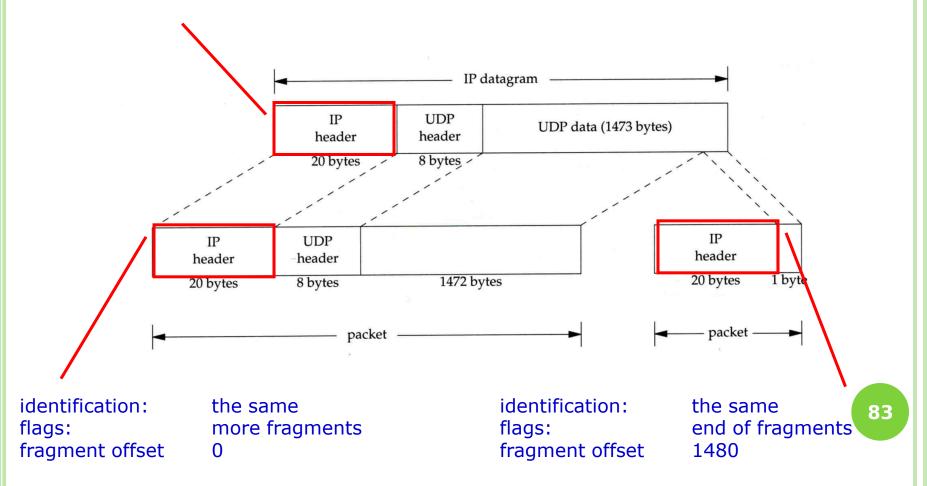
o No reliability

Datagram-oriented, not stream-oriented protocol

UDP header


- 8 bytes
 - Source port and destination port
 - Identify sending and receiving process
 - UDP length: ≥ 8

IP Fragmentation (1)


MTU limitation

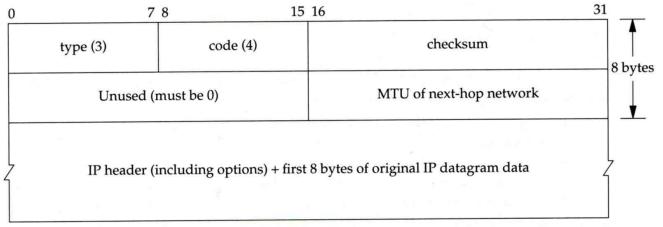
- Before network-layer to link-layer
 - IP will check the size and link-layer MTU
 - Do fragmentation if necessary
- Fragmentation may be done at sending host or routers
- Reassembly is done only in receiving host

IP Fragmentation (2)

identification: flags: fragment offset which unique IP datagram more fragments? offset of this datagram from the beginning of original datagram

IP Fragmentation (3)

Issues of fragmentation


- One fragment lost, entire datagram must be retransmitted
- If the fragmentation is performed by intermediate router, there is no way for sending host how fragmentation did
- Fragmentation is often avoided
 There is a "don't fragment" bit in flags of IP header

ICMP Unreachable Error – Fragmentation Required

• Type=3, code=4

 Router will generate this error message if the datagram needs to be fragmented, but the "don't fragment" bit is turn on in IP header

Message format

– Source Quench Error

o Type=4, code=0

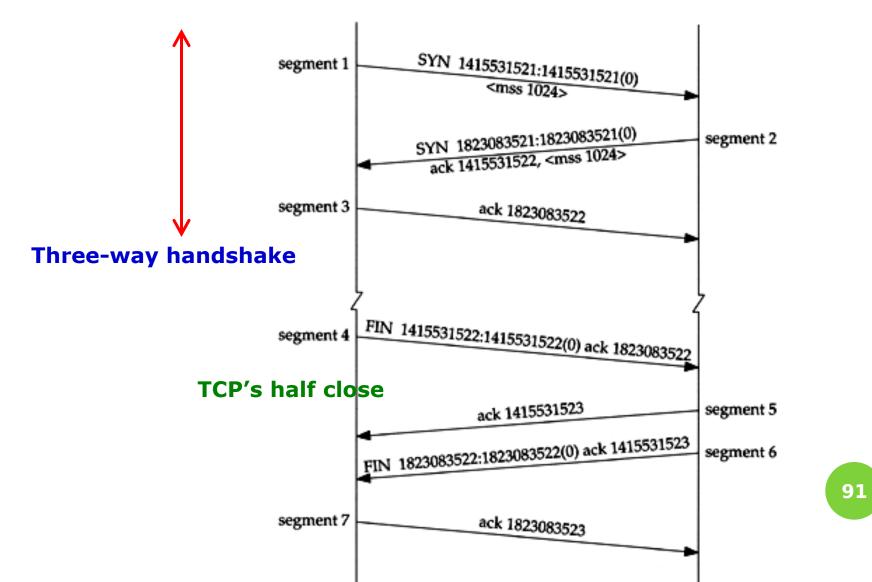
- May be generated by system when it receives datagram at a rate that is too fast to be processed
- Host receiving more than it can handle datagram
 Send ICMP source quench or
 - Throw it away
- Host receiving UDP source quench message
 - Ignore it or
 - Notify application

TCP – Transmission Control Protocol

TCP

Services

- Connection-oriented
 - Establish TCP connection before exchanging data
- Reliability
 - Acknowledgement when receiving data
 - Retransmission when timeout
 - Ordering
 - Discard duplicated data
 - Flow control

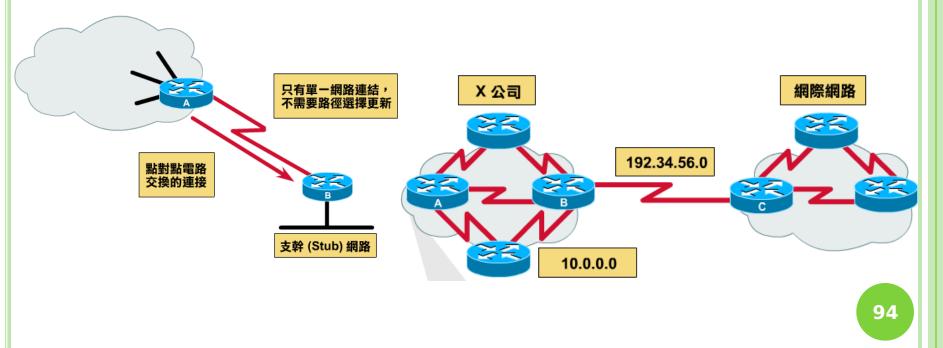

0					15	16	31	
16-bit source port number 16-bit destination port number					16-bit destination port number		Ť	
			32-bi	t seq	lne	nce number		
	32-bit acknowledgment number							20 bytes
4-bit header length	KILISISIYIII Ibehit window size							
	16-bit TCP checksum 16-bit urgent pointer							
[[7 options (if any)							7
7 data (if any)							7	

TCP – Header (2)

o Flags

- SYN
 - Establish new connection
- ACK
 - Acknowledgement number is valid
 - Used to ack previous data that host has received
- RST
 - Reset connection
- FIN
 - The sender is finished sending data

TCP CONNECTION ESTABLISHMENT AND TERMINATION



Why dynamic route ? (1)

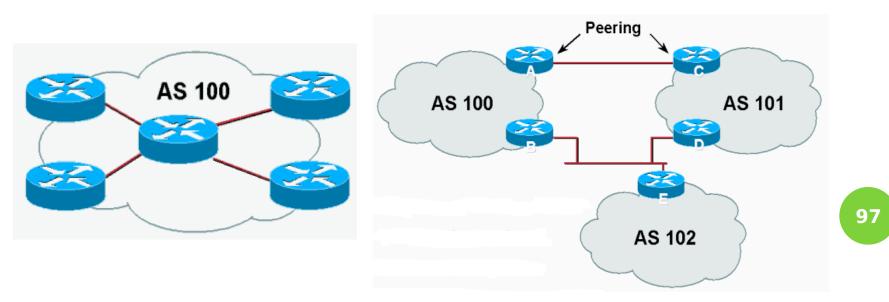
• Static route is ok only when

- Network is small
- There is a single connection point to other network
- No redundant route

Why dynamic route ? (2)

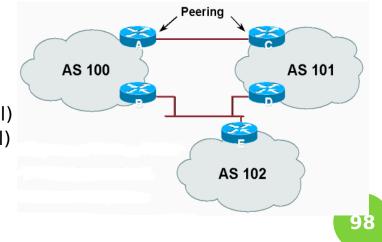
Dynamic Routing

- Routers update their routing table with the information of adjacent routers
- Dynamic routing need a routing protocol for such communication
- Advantage:
 - They can react and adapt to changing network condition

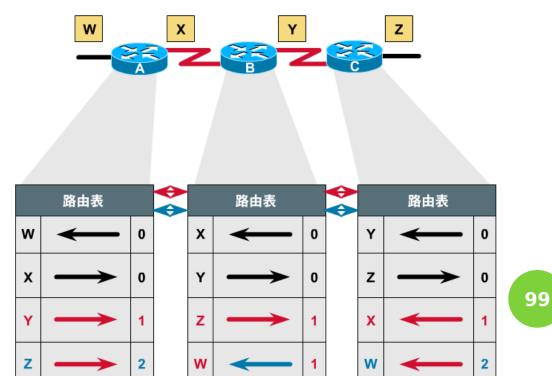


Routing Protocol

- Used to change the routing table according to various routing information
 - Specify detail of communication between routers
 - Specify information changed in each communication,
 - Network reachability
 - Network state
 - Metric
- Metric
 - A measure of how good a particular route
 o Hop count, bandwidth, delay, load, reliability, ...
- Each routing protocol may use different metric and exchange different information


Autonomous System

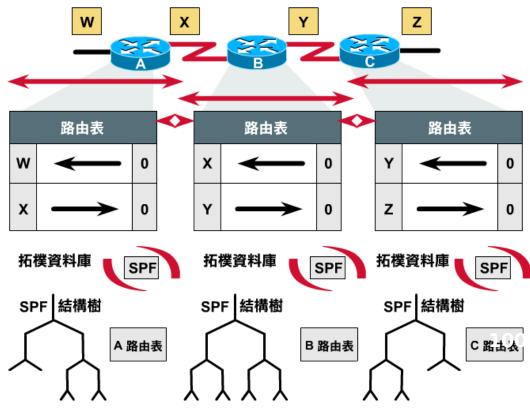
- Autonomous System (AS)
 - Internet is organized in to a collection of autonomous system
 - An AS is a collection of networks with same routing policy
 - Single routing protocol
 - Normally administered by a single entity
 - Corporation or university campus
 - All depend on how you want to manage routing


Category of Routing Protocols – by AS

- AS-AS communication
 - Communications between routers in different AS
 - Interdomain routing protocols
 - Exterior gateway protocols (EGP)
 - Ex:
 - BGP (Border Gateway Protocol)
- Inside AS communication
 - Communication between routers in the same AS
 - Intradomain routing protocols
 - Interior gateway protocols (IGP)
 - Ex:
 - RIP (Routing Information Protocol)
 - IGRP (Interior Gateway Routing Protocol)
 - OSPF (Open Shortest Path First Protocol)

Category of Routing Protocols – by information changed (1)

- Distance-Vector Protocol
 - Message contains a vector of distances, which is the cost to other network
 - Each router updates its routing table based on these messages received from neighbors
 - Protocols:
 - RIP
 - IGRP
 - BGP

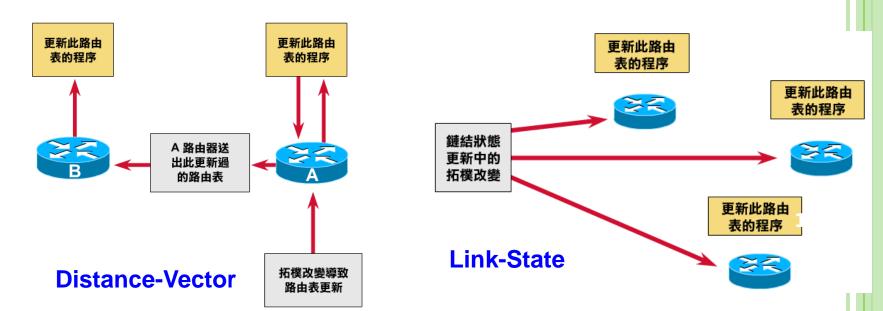


Category of Routing Protocols – by information changed (2)

Link-State Protocol

- Broadcast their link state to neighbors and build a complete network map at each router using Dijkstra algorithm
- Protocols:

o OSPF



Difference between Distance-Vector and Link-State

o Difference

	Distance-Vector	Link-State
Update	updates neighbor (propagate new info.)	update all nodes
Convergence	Propagation delay cause slow convergence	Fast convergence
Complexity	simple	Complex

Information update sequence

Routing Protocols

RIP	IGP, DV
IGRP	IGP, DV
OSPF	IGP, LS
BGP	EGP

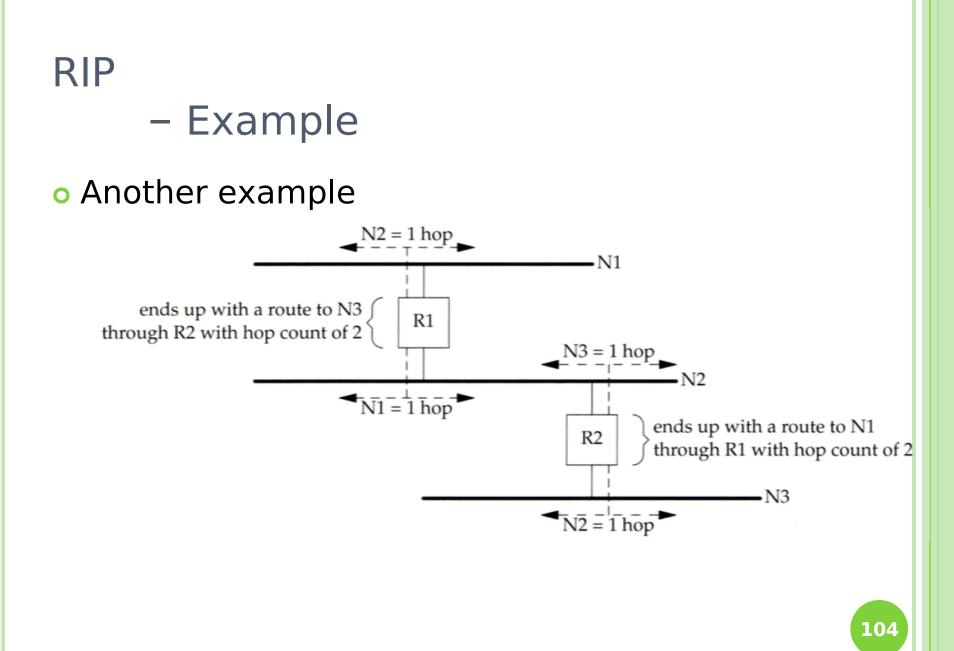
RIP

o RIP

Routing Information Protocol

Category

- Interior routing protocol
- Distance-vector routing protocol
 - Using "hop-count" as the cost metric

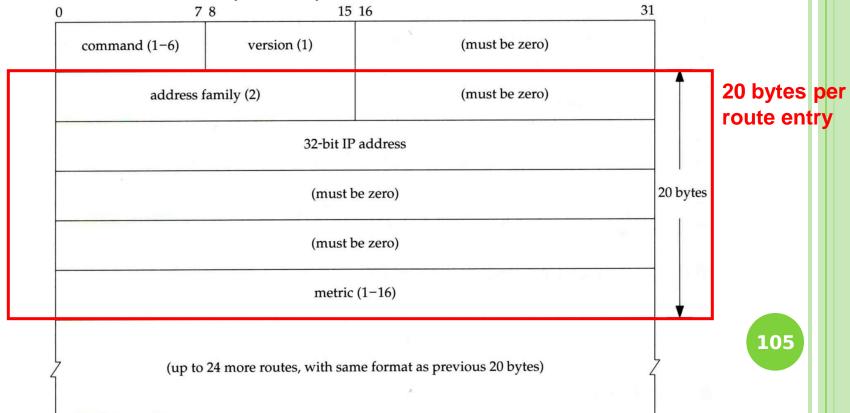

<u>o Example of how RIP advertisements work</u>

Destination network	Next router	# of hops to destination	Destination network	Next router	# of hops to destination	Destination network	Next router	# of hops to destination
1	А	2	30	С	4	1	А	2
20	В	2	1		1	20	В	2
30	В	7	10		1	30	Α	5
								103

Routing table in router before Receiving advertisement

Advertisement from router A

Routing table after receiving advertisement



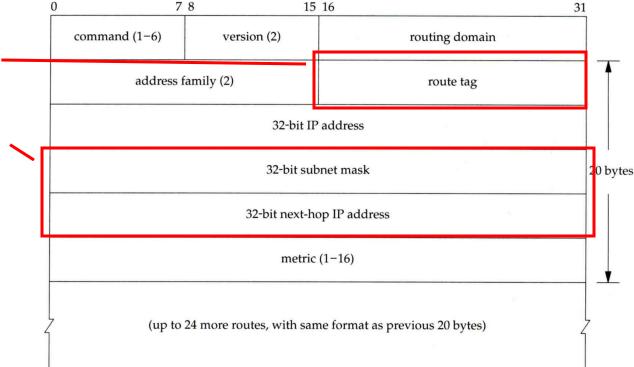
Message Format

• RIP message is carried in UDP datagram

- Command: 1 for request and 2 for reply
- Version: 1 or 2 (RIP-2)

RIP

- routed RIP routing daemon
 - Operated in UDP port 520
- Operation
 - Initialization
 - Probe each interface
 - send a request packet out each interface, asking for other router's complete routing table
 - Request received
 - Send the entire routing table to the requestor
 - Response received
 - Add, modify, delete to update routing table
 - Regular routing updates
 - Router sends out their routing table to every neighbor every 30 minutes
 - Triggered updates
 - Whenever a route entry's metric change, send out those changed part routing table



Problems of RIP

- Issues
 - 15 hop-count limits
 - Take long time to stabilize after the failure of a router or link
 - No CIDR

o RIP-2

- EGP support
 AS number
- CIDR support

IGRP (1)

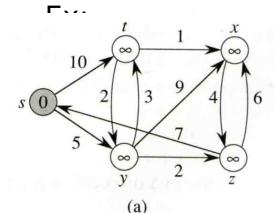
- IGRP Interior Gateway Routing Protocol
- Similar to RIP
 - Interior routing protocol
 - Distance-vector routing protocol
- Difference between RIP
 - Complex cost metric other than hop count
 - delay time, bandwidth, load, reliability
 - The formula

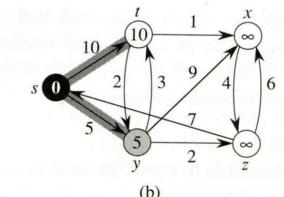
$$\frac{bandwith_weight}{bandwith*(1-load)} + \frac{delay_weight}{delay})*reliability$$

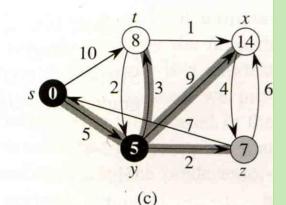
- Use TCP to communicate routing information
- Cisco System's proprietary routing protocol

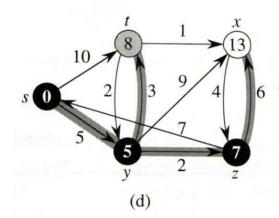
IGRP (2)

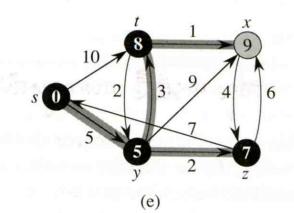
- Advantage over RIP
 - Control over metrics
- Disadvantage
 - Still classful and has propagation delay

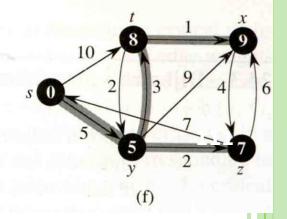

OSPF (1)

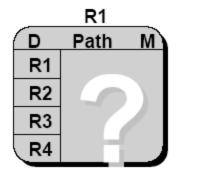

- OSPF
 - Open Shortest Path First
- Category
 - Interior routing protocol
 - Link-State protocol
- Each interface is associated with a cost
 - Generally assigned manually
 - The sum of all costs along a path is the metric for that path
- Neighbor information is broadcast to all routers
 - Each router will construct a map of network topology
 - Each router run Dijkstra algorithm to construct the shortest path tree to each routers

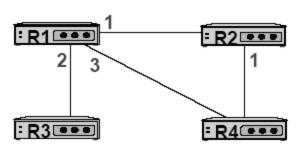

OSPF – Dijkstra Algorithm

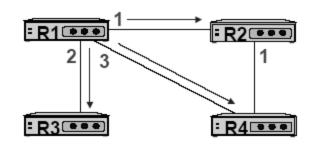

Single Source Shortest Path Problem


Dijkstra algorithm use "greedy" strategy

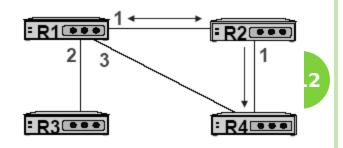




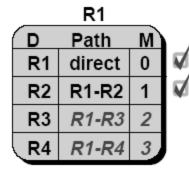


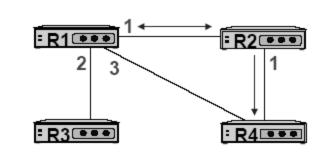

OSPF

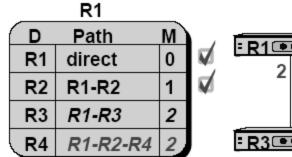
- ROUTING TABLE UPDATE EXAMPLE (1)

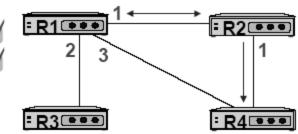


R1						
ĺ	D	Path	M			
	R1	direct	0	¥		
	R2	R1-R2	1			
	R3	R1-R3	2			
	R4	R1-R4	3			




R1						
D	Path	M				
R1	direct	0	V			
R2	R1-R2	1	V			
R3	R1-R3	2				
R4	R1-R4	3				




OSPF

- ROUTING TABLE UPDATE EXAMPLE (2)

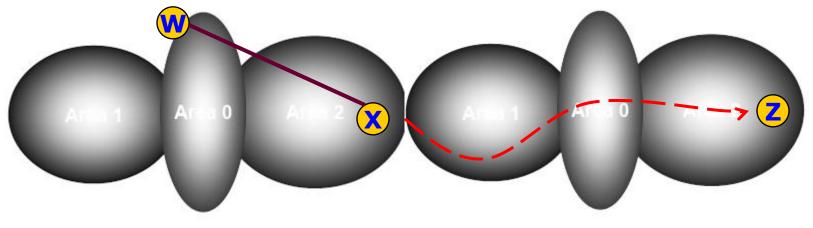
	R1				
D	Path	M		1	
R1	direct	0	Ø		E R2(••••)
R2	R1-R2	1	Ø	2 3	
R3	R1-R3	2	Ø		
R4	R1-R2-R4	2	\mathbf{A}	- R3	• R4 • • •

OSPF

– Summary

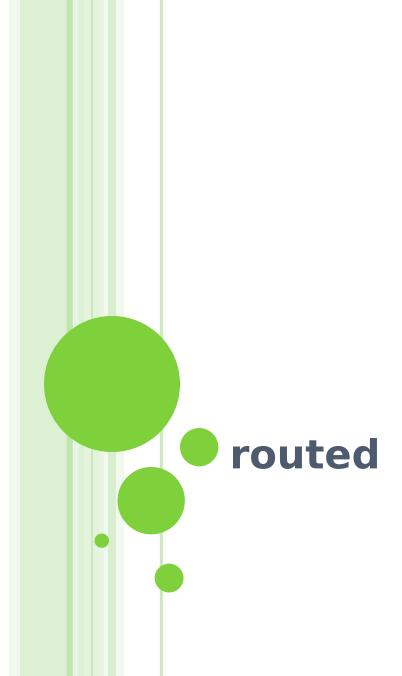
- Advantage
 - Fast convergence
 - CIDR support
 - Multiple routing table entries for single destination, each for one type-of-service
 - Load balancing when cost are equal among several routes
- Disadvantage
 - Large computation

BGP


o BGP

- Border Gateway Protocol
- Exterior routing protocol
 - Now BGP-4
 - Exchange network reachability information with other BGP systems
- Routing information exchange
 - Message:
 - Full path of autonomous systems that traffic must transit to reach destination
 - Can maintain multiple route for a single destination
 - Exchange method
 - Using TCP
 - Initial: entire routing table
 - Subsequent update: only sent when necessary
 - Advertise only optimal path
- Route selection
 - Shortest AS path

BGP


- Operation Example

- How BGP work
 - The whole Internet is a graph of autonomous systems
 - X→Z
 - Original: $X \rightarrow A \rightarrow B \rightarrow C \rightarrow Z$
 - X advertise this best path to his neighbor W
 - W→Z
 - $\circ W \rightarrow X \rightarrow A \rightarrow B \rightarrow C \rightarrow Z$

ROUTING PROTOCOLS COMPARISON

	RIP	IGRP	OSPF	BGP4
DV or LS	DV	DV	LS	Path Vec
TCP/UDP & Port	U - 520	IP - 9	T - 89	T - 179
Classless	No	No	Yes	Yes
Updates	Per.	Per.	Both	Trig.
Load Balance	No	Yes	Yes	No
Internal / External	Int.	Int.	Int.	Ext.
Metric	Hop Count	Load Errors Delay Bdwth	Sum of Int. Cost	Short. AS Path

routed

- Routing daemon
 - Speak RIP (v1 and v2)
 - Supplied with most every version of UNIX
 - Two modes
 - Server mode (-s) & Quiet mode (-q)
 - Both listen for broadcast, but server will distribute their information
 - routed will add its discovered routes to kernel's routing table
 - Support configuration file /etc/gateways
 Provide static information for initial routing table

net Nname[/mask] gateway Gname metric value <passive | active | extern>

host Hname gateway Gname metric value <passive | active | extern>

Network Hardware

Network Performance Issues

Three major factors

- Selection of high-quality hardware
- Reasonable network design
- Proper installation and documentation

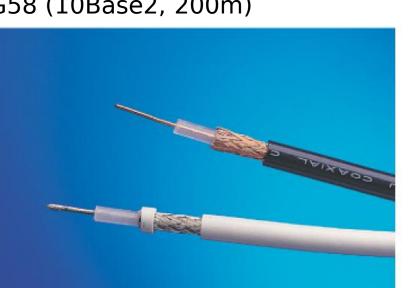
Hardware Selection – Classification of market

- o LAN
 - Local Area Network
 - Networks that exist within a building or group of buildings
 - High-speed, low-cost media
- o WAN
 - Wide Area Network
 - Networks that endpoints are geographically dispersed
 - High-speed, high-cost media
- o MAN
 - Metropolitan Area Network
 - Networks that exist within a city or cluster of cities

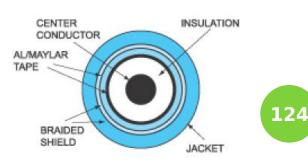
Hardware Selection -LAN Media (1)

Evolution of Ethernet

Year	Speed	Common name	IEEE#	Dist	Media	
1973	3 Mb/s	Xerox Ethernet	-	?	Coax	
1980	10 Mb/s	Ethernet 1	-	500m	RG-11 coax	• • • • • •
1982	10 Mb/s	DIX Ethernet (Ethernet II)	-	500m	RG-11 coax	Coaxial cable
1985	10 Mb/s	10Base5 ("Thicknet")	802.3	500m	RG-11 coax	
1985	10 Mb/s	10Base2 ("Thinnet")	802.3	180m	RG-58 coax	
1989	10 Mb/s	10BaseT	802.3	100m	Category 3 UTP ^a copper	
1993	10 Mb/s	10BaseF	802.3	2km	MM ^b Fiber	
				25km	SM Fiber	
1994	100 Mb/s	100BaseTX ("100 meg")	802.3u	100m	Category 5 UTP copper	UTP
1994	100 Mb/s	100BaseFX	802.3u	2km	MM fiber	
				20km	SM flber	
1998	1 Gb/s	1000BaseSX	802.3z	260m	62.5-µm MM fiber	
				550m	50-µm MM fiber	
1998	1 Gb/s	1000BaseLX	802.3z	440m	62.5-µm MM fiber	Fiber
				550m	50-µm MM fiber	TIDEI
				3km	SM fiber	
1998	1 Gb/s	1000BaseCX	802.3z	25m	Twinax	
1999	1 Gb/s	1000BaseT ("Gigabit")	802.3ab	100m	Cat 5E and 6 UTP copper	123

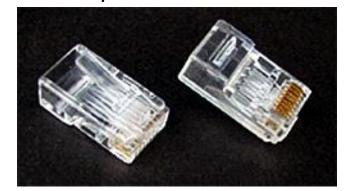

a. Unshielded twisted pair

b. Multimode and single-mode fiber


Hardware Selection – LAN Media (2)

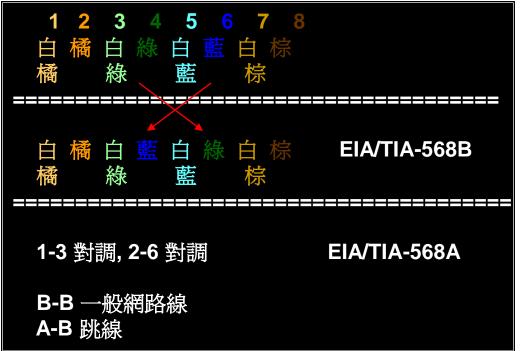
Coaxial cable

- Cooperated with BNC connector
- Speed: 10 Mbps
- Coaxial cable used in LAN
 - RG11 (10Base5, 500m)
 - RG58 (10Base2, 200m)



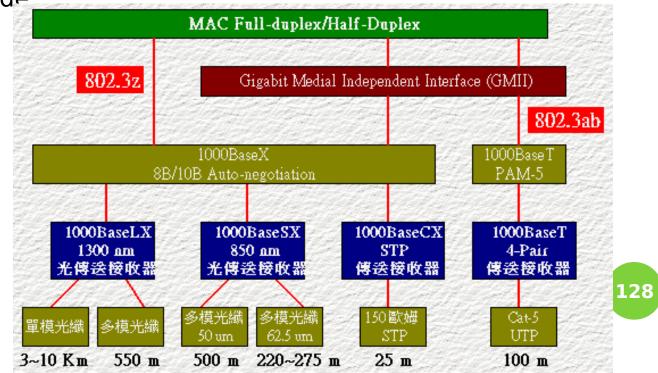
Hardware Selection – LAN Media (3)

- Twisted Pair Cable
 - UTP (Unshielded) and STP (Shielded)
 - STP has conductive shield
 - More expensive but good in resisting cross talk
 - Cooperated with RJ45 connector
 - Categories
 - From CATEGORY-1 ~ CATEGORY-7, CATEGORY-5E
 - Cat3 up to 10Mbps (10BaseT, 100m)
 - Cat5 up to 100Mbps


(100BaseTX, 100m) Cat5e / Cat6 up to 1000Mbps (1000BaseT, 100m)

Hardware Selection – LAN Media (4)

UTP cable wiring standard
 TIA/EIA-568A, 568B


Hardware Selection – LAN Media (5)

- Fiber Optical Cable
 - Mode
 - Bundle of light rays that enter the fiber at particular angle

- Two mode
 - Single-mode (exactly one frequency of light)
 - One stream of laser-generated light
 - Long distance, cheaper
 - Multi-mode (allow multiple path in fiber)
 - Multiple streams of LED-generated light
 - Short distance, more expensive
- Wavelength
 - o 0.85, 1.31, 1.55 μm
- Connector
 - ST, SC, MT-RJ

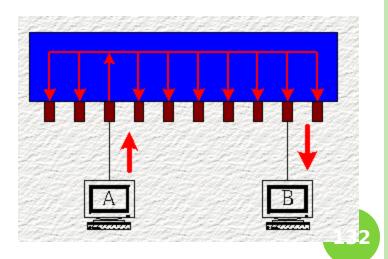
Hardware Selection – LAN Media (6)

- 1000BaseLX (Long wavelength, 1.31µm)
 - Single mode
 - Multi mode
- 1000BaseSX (Short wavelength, 0.85 μm)
 - o Multimode

Hardware Selection – LAN Media (8)

- Wireless
 - 802.11a
 - 5.4GHz
 - Up to 22Mbps
 - 802.11b
 - 2.4GHz
 - Up to 11Mbps
 - 802.11g
 - 2.4GHz
 - Up to 54Mbps
 - 802.11n
 - Draft 2.0 (~2007/1)
 - Up to 100Mbps
 - MIMO

Hardware Selection – LAN Device (1)


Connecting and expanding Ethernet

- Layer1 device
 - Physical layer
 - Repeater, Transceiver, HUB
 - Does not interpret Ethernet frame
- Layer2 device
 - Data-link layer
 - Switch, Bridge
 - Transfer Ethernet frames based on hardware address
- Layer3 device
 - Network layer
 - Router
 - Route message based on IP address

Hardware Selection – LAN Device (2)

o HUB


- Layer1 device
- Multi-port repeater
- Increasing collision domain size
- MDI and MDI-X ports
 - (Media Dependent Interface Crossover)
 - Auto-sense now
- 5-4-3 rules in 10Mbps
 - More severe in 100Mbps ~
- Switching HUB
 - Layer1 device but forward to required port

Hardware Selection – LAN Device (3)

Bridge

- Layer2 device
- Forward Ethernet frames among different segments
- Bridge table
 - Fewer collisions
- STP (Spanning Tree Protocol)
 - Loop avoidances
 - Including
 - STA
 - (Spanning Tree Algorithm)
 - BPDUs
 - (Bridge Protocol Data Units)

Hardware Selection – LAN Device (4)

Switch (layer2)

- Layer2 device
- Multi-port bridge
 - Each port is a single collision domain
 - Learning
 - Each port can learn 1024 Ethernet Address
 - Store-and-Forward
- Port Trunks
 - Aggregate multi-ports to form a logical one
 - o Bandwidth
 - Reliability

VLAN – Virtual LAN

- o VLAN
 - Spilt a physical switch into several logical switches
 - Static VLAN
 - Administratively assign which port to which VLAN
 - Trunking
 - IEEE 802.1Q Tagging
 - Cisco's Inter-Switch Link Tagging
 - 3COM's VLT Tagging

Last Mile Solution

o xDSL

- Digital Subscriber Line
- ADSL for asymmetric DSL
- Use ordinary telephone wire to transmit data
- Cable Modem
 - Use TV cable to transmit data
- Dedicated phone connection
 - T1 (DS1 line)
 - 1.544Mbps, 24 channels, each channel 64Kbps
 - T2 (DS2 line)
 - 6.1Mpbs, 96 channels, each channel 64Kbps
 - T3 (DS3 line)
 - 43Mbps, 672 channels, each channel 64Kbps
- FTTx (Fiber To The Home)
 - FTTH for home, FTTB for building, FTTC for Curb