
Firewalls

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

2

Firewalls

 Firewall

• hardware/software

• choke point between secured and unsecured network

• filter incoming and outgoing traffic

• prevent communications which are forbidden by the security policy

 What it can be used to do

• Incoming: protect and insulate the applications, services and machines

 Such as telnetd, NetBIOS, apache

• Outgoing: limit or disable access from the internal network

 Such as LOL, ssh, ftp, facebook, SC2, D3

• NAT (Network Address Translation)

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

3

Firewalls – Capabilities

 Network Layer Firewalls

• Operate at a low level of TCP/IP stack as IP-packet filters.

• Filter attributes

 Source/destination IP

 Source/destination port

 TTL

 Protocols

 …

 Application Layer Firewalls

• Work on the application level of the TCP/IP stack.

• Inspect all packets for improper content, a complex work!

 Application Firewalls

• The access control implemented by applications.

• TCP Wrapper (libwrap)

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

4

Firewalls – Rules

 Exclusive

• Only block the traffic matching the rulesets

 Inclusive

• Only allow the traffic matching the rulesets

• Offer much better control of the incoming/outgoing traffic

• Safer than exclusive one

 (Y) reduce the risk of allowing unwanted traffic to pass

 (N) increase the risk to block yourself with wrong configuration

 State

• Stateful

 Keep track of which connections are opened through the firewall

 Be vulnerable to Denial of Service (DoS) attacks

• Stateless

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

5

Firewalls – Packages

 FreeBSD

• IPFILTER (known as IPF)

• IPFIREWALL (known as IPFW) + Dummynet

• Packet Filter (known as PF)+ ALTQ

migrated from OpenBSD

 v4.5 (In FreeBSD 9.x and later)

 http://www.openbsd.org/faq/pf/ v5.6

 Linux

• ipchains

• iptables

• nftables

http://www.openbsd.org/faq/pf/

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

6

Packet Filter (PF)

 Functionality

• Filtering packets

• NAT

• Load balance

• QoS: (ALTQ: Alternate Queuing)

• Failover (pfsync + carp)

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

7

PF in FreeBSD – Enable pf*

 In /etc/rc.conf (kernel modules loaded automatically)

pf_enable="YES"

pflog_enable="YES"

pfsync_enable="YES"

 Kernel configurations

device pf

device pflog

device pfsync

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

8

PF in FreeBSD – Commands

 /etc/rc.d/pf

• start / stop / restart / status / check / reload / resync

 pfctl

• -e / -d

• -F {nat | rules | state | info | Tables | all | …}

• -v -s {nat | rules | state | info | all | Anchors | Tables | …}

• -v -n -f /etc/pf.conf

• -t <table> -T {add | delete| test} {ip …}

• -t <table> -T {show | kill | flush | …}

• -k {host | network} [-k {host | network}]

• -a {anchor} …

Default anchor: -a '*'

 Ex. -a ‘ftp-proxy/*’

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

9

PF in FreeBSD – Config ordering

 Macros

• user-defined variables, so they can be referenced and changed easily.

 Tables “table”

• similar to macros, but efficient and more flexible for many addresses.

 Options “set”

• tune the behavior of pf, default values are given.

 Normalization “scrub”

• reassemble fragments and resolve or reduce traffic ambiguities.

 Queueing “altq”, “queue”

• rule-based bandwidth control.

 Translation (NAT) “rdr”, “nat”, “binat”

• specify how addresses are to be mapped or redirected to other addresses

• First match rules

 Filtering “antispoof”, “block”, “pass”

• rule-based blocking or passing packets

• Last match rules

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

10

PF in FreeBSD – Lists

 Lists

• Allow the specification of multiple similar criteria within a rule

multiple protocols, port numbers, addresses, etc.

• defined by specifying items within { } brackets.

• eg.

 pass out on rl0 proto { tcp, udp } from { 192.168.0.1, 10.5.32.6 } to any

 pass in on fxp0 proto tcp to port { 22 80 }

• Pitfall

 pass in on fxp0 from { 10.0.0.0/8, !10.1.2.3 }

You mean (It means)

1. pass in on fxp0 from 10.0.0.0/8

2. block in on fxp0 from 10.1.2.3

2. pass in on fxp0 from !10.1.2.3

Use table, instead.

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

11

PF in FreeBSD – Macros

Macros

• user-defined variables that can hold IP addresses, port numbers,

interface names, etc.

• reduce the complexity of a pf ruleset and also make maintaining a

ruleset much easier.

• Naming: start with [a-zA-Z] and may contain [a-zA-Z0-9_]

• eg.

 ext_if = "fxp0“

 block in on $ext_if from any to any

• Macro of macros

 host1 = "192.168.1.1“

 host2 = "192.168.1.2“

 all_hosts = "{" $host1 $host2 "}"

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

12

PF in FreeBSD – Tables (1)

 Tables

• used to hold a group of IPv4 and/or IPv6 addresses

 hostname, inteface name, and keyword self

• Lookups against a table are very fast and consume less memory and

processor time than lists

• Two attributes

 persist: keep the table in memory even when no rules refer to it

 const: cannot be changed once the table is created

• eg.

 table <private> const { 10/8, 172.16/12, 192.168/16 }

 table <badhosts> persist

 block on fxp0 from { <private>, <badhosts> } to any

 table <spam> persist file "/etc/spammers" file "/etc/openrelays"

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

13

PF in FreeBSD – Tables (2)

 Tables – Address Matching

• An address lookup against a table will return the most narrowly

matching entry

• eg.

 table <goodguys> { 172.16.0.0/16, !172.16.1.0/24, 172.16.1.100 }

 block in on dc0

 pass in on dc0 from <goodguys>

• Result

 172.16.50.5 passed

 172.16.1.25 blocked

 172.16.1.100 passed

 10.1.4.55 blocked

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

14

PF in FreeBSD – Options

 Format

• control pf's operation, and specified in pf.conf using “set”

 Format: set option [sub-ops] value

 Options

• loginterface – collect packets and gather byte count statistics

• ruleset-optimization – ruleset optimizer

 none, basic, profile

 basic: remove dups, remove subs, combine into a table, re-order rules

• block-policy – default behavior for blocked packets

 drop, return

• skip on {ifname} – interfaces for which packets should not be filtered.

 eg. set skip on lo0

• timeout, limit, optimization, state-policy, hostid, require-order,

fingerprints, debug

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

15

PF in FreeBSD – Normalization

 Traffic Normalization

• IP fragment reassembly

 scrub in all

• Default behavior

 Fragments are buffered until they form a complete packet, and only the

completed packet is passed on to the filter.

Advantage: filter rules have to deal only with complete packets, and

ignore fragments.

Disadvantage: caching fragments is the additional memory cost

 The full reassembly method is the only method that currently works

with NAT.

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

16

PF in FreeBSD – Translation (1)

 Translation

• Modify either the source or destination address of the packets

• The translation engine

1. modifies the specified address and/or port in the packet

2. passes it to the packet filter for evaluation

• Filter rules filter based on the translated address and port number

• Packets passed directly if the pass modifier is given in the rule

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

17

PF in FreeBSD – Translation (2)

 Various types of translation

• binat – bidirectional mapping between an external IP netblock and

an internal IP netblock

 binat on $ext_if from 10.1.2.150 to any -> 140.113.235.123

 binat on $ext_if from 192.168.1.0/28 to any -> 140.113.24.0/28

• nat – IP addresses are to be changes as the packet traverses the given

interface

 no nat on $ext_if from 192.168.123.234 to any

 nat pass on $ext_if from 192.168.123.0/24 to any -> 140.113.235.21

• rdr – redirect packets to another destination and possibly different

port

 no rdr on $int_if proto tcp from any to $server port 80

 rdr on $int_if proto tcp from any to any port 80 -> 127.0.0.1 port 80

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

18

PF in FreeBSD – Translation (3)

 Evaluation

• Evaluation order of translation rules depends on the type

 binat rules first, and then either rdr rules for inbound packets or nat

rules for outbound packets

• Rules of the same type are evaluated in the order of appearing in the

ruleset

• The first matching rule decides what action is taken

• If no rule matches the packet, it is passed to the filter unmodified

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

19

PF in FreeBSD – Packet Filtering (1)

 pf has the ability to block and pass packets based on

• layer 3(ip, ip6) and layer 4(icmp, icmp6, tcp, udp) headers

 Each packet processed by the filter

• The filter rules are evaluated in sequential order

• The last matching rule decides what action is taken

• If no rule matches the packet, the default action is to pass

 Format

• {pass | block [drop | return]} [in | out] [log] [quick]

[on ifname] … {hosts} …

• The simplest to block everything by default: specify the first filter rule

 block all

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

20

PF in FreeBSD – Packet Filtering (2)

 States

• If the packet is passed, state is created unless the no state is specified

 The first time a packet matches pass, a state entry is created

 For subsequent packets, the filter checks whether each matches any state

 For TCP, also check its sequence numbers

 pf knows how to match ICMP replies to states

– Port unreachable for UDP

– ICMP echo reply for echo request

– …

 Stores in BST for efficiency

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

21

PF in FreeBSD – Packet Filtering (3)

 Parameters

• in | out – apply to imcoming or outgoing packets

• log - generate log messages to pflog (pflog0, /var/log/pflog)

Default: the packet that establishes the state is logged

• quick – the rule is considered the last matching rule

• on ifname – apply only on the particular interface

• inet | inet6 – apply only on this address family

• proto {tcp | udp | icmp | icmp6} – apply only on this protocol

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

22

PF in FreeBSD – Packet Filtering (4)

 Parameters

• hosts : { from host [port [op] #] to host [port [op] #] | all }

• host:

 host can be specified in CIDR notation, hostnames, interface names,

table, or keywords any, self, …

Hostnames are translated to address(es) at ruleset load time.

When the address of an interface or hostname changes, the ruleset must

be reloaded

When interface name is surrounded by (), the rule is automatically

updated whenever the interface changes its address

• port:

 ops: unary(=, !=, <, <=, >, >=), and binary(:, ><, <>)

• eg.

 block in all

 pass in proto tcp from any port < 1024 to self port 33333:44444

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

23

PF in FreeBSD – Packet Filtering (5)

 Parameters

• flags {<a>/ | any} – only apply to TCP packets

 Flags: (F)IN, (S)YN, (R)ST, (P)USH, (A)CK, (U)RG, (E)CE, C(W)R

 Check flags listed in , and see if the flags (not) in <a> is (not) set

 eg.

– flags S/S : check SYN is set, ignore others.

– flags S/SA: check SYN is set and ACK is unset., ignore others

Default flags S/SA for TCP

• icmp-type type code code

• icmp6-type type code code

Apply to ICMP and ICMP6 packets

• label – for per-rule statistics

• {tag | tagged} string

 tag by nat, rdr, or binat, and identify by filter rules.

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

24

PF in FreeBSD – Load Balance

 Load balance

• For nat and rdr rules

• eg.

 rdr on $ext_if proto tcp from any to any port 80 \

-> {10.1.2.155, 10.1.2.160, 10.1.2.161} round-robin

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

25

PF in FreeBSD – Security

 For security consideration

• state modulation

 Create a high quality random sequence number

Applying modulate state parameter to a TCP connection

• syn proxy

 pf itself completes the handshake

Applying synproxy state parameter to a TCP connection

– Include modulate state

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

26

PF in FreeBSD – Stateful tracking

 Stateful tracking options

• keep state, modulate state, and synproxy state support these options

 keep state must be specidied explicitly to apply options to a rule

• eg.

 table <bad_hosts> persist

 block quick from <bad_hosts>

 pass in on $ext_if proto tcp to ($ext_if) port ssh keep state \

(max-src-conn-rate 5/30, overload <bad_hosts> flush global)

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

27

PF in FreeBSD – Blocking spoofed

 Blocking spoofed traffic

• antispoof for ifname

• antispoof for lo0

 block drop in on ! lo0 inet from 127.0.0.1/8 to any

 block drop in on ! lo0 inet6 from ::1 to any

• antispoof for wi0 inet (IP: 10.0.0.1, netmask 255.255.255.0)

 block drop in on ! wi0 inet from 10.0.0.0/24 to any

 block drop in inet from 10.0.0.1 to any

• Pitfall:

 Rules created by the antispoof interfere with packets sent over loopback

interfaces to local addresses. One should pass these explicitly.

 set skip on lo0

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

28

PF in FreeBSD – Anchors

 Besides the main ruleset, pf can load rulesets into anchor

attachment points

• An anchor is a container that can hold rules, address tables, and other

anchors

• The main ruleset is actually the default anchor

• An anchor can reference another anchor attachment point using

 nat-anchor

 rdr-anchor

 binat-anchor

 anchor

 load anchor <name> from <file>

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

29

PF in FreeBSD – Example

 Ex. # macro definitions

extdev='fxp0‘

server_ext=‘140.113.214.13’

options

set limit { states 10000, frags 5000 }

set loginterface $extdev

set block-policy drop

set skip on lo0

tables

table <badhosts> persist file “/etc/badhosts.list”

filtering rules

block in all

pass out all

antispoof for $extdev

block log in on $extdev proto tcp from any to any port {139, 445}

block log in on $extdev proto udp from any to any port {137, 138}

block on $extdev quick from <badhosts> to any

pass in on $extdev proto tcp from 140.113.0.0/16 to any port {139, 445}

pass in on $extdev proto udp from 140.113.0.0/16 to any port {137, 138}

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

30

PF in FreeBSD – Debug by pflog

 Enable pflog in /etc/rc.conf (pflog.ko loaded automatically)

• pflog_enable="YES"

 Log to pflog0 interface

 tcpdump –i pflog0

• pflog_logfile="/var/log/pflog"

 tcpdump -r /var/log/pflog

 Create firewall rules

• Default configuration rules

 pf_rules="/etc/pf.conf"

• Sample files

 /usr/share/examples/pf/*

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

31

NAT on FreeBSD (1)

 Setup

• Network topology

• configuration

• Advanced redirection

configuration

192.168.1.1

Web server

192.168.1.2

Ftp Server

192.168.1.101

PC1

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

32

NAT on FreeBSD (2)

 In /etc/rc.conf

ifconfig_fxp0="inet 140.113.235.4"

ifconfig_fxp1="inet 192.168.1.254/24"

defaultrouter="140.113.235.254“

gateway_enable="YES"

 In /etc/pf.conf

• nat

• rdr

• binat

macro definitions

extdev='fxp0‘

intranet='192.168.1.0/24‘

webserver=‘192.168.1.1’

ftpserver=‘192.168.1.2’

winxp=‘192.168.1.101’

server_int=‘192.168.1.88’

server_ext=‘140.113.235.13’

nat rules

nat on $extdev inet from $intranet to any -> $extdev

rdr on $extdev inet proto tcp to port 80 -> $webserver port 80

rdr on $extdev inet proto tcp to port 443 -> $webserver port 443

rdr on $extdev inet proto tcp to port 21 -> $ftpserver port 21

rdr on $extdev inet proto tcp to port 3389 -> $winxp port 3389

binat on $extdev inet from $server_int to any -> $server_ext

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

33

ALTQ: Alternate Queue – (1)

 Rebuild Kernel is needed

• http://www.freebsd.org/doc/handbook/firewalls-pf.html

http://www.freebsd.org/doc/handbook/firewalls-pf.html

C
o
m

p
u
te

r C
e
n
te

r, C
S

, N
C

T
U

34

ALTQ: Alternate Queue – (2)

 altq on dc0 cbq bandwidth 5Mb queue {std, http}

 queue std bandwidth 10% cbq(default)

 queue http bandwidth 60% priority 2 cbq(borrow) {employee,developer}

 queue developers bandwidth 75% cbq(borrow)

 queue employees bandwidth 15%

 block return out on dc0 inet all queue std

 pass out on dc0 inet proto tcp from $developerhosts to any port 80 queue

developers

 pass out on dc0 inet proto tcp from $employeehosts to any port 80 queue

employees

 pass out on dc0 inet proto tcp from any to any port 22

 pass out on dc0 inet proto tcp from any to any port 25

