Firewalls

'®)
o -

= Firewalls

o)

=

®

O d Firewall

@® « hardware/software

« choke point between secured and unsecured network
« filter incoming and outgoing traffic
« prevent communications which are forbidden by the security policy

O What it can be used to do
« Incoming: protect and insulate the applications, services and machines
» Such as telnetd, NetBIOS, apache

« Outgoing: limit or disable access from the internal network
» Such as LOL, ssh, ftp, facebook, SC2, D3

« NAT (Network Address Translation)

Firewalls — Capabilities

TCP/IP
O Network Layer Firewalls

» Operate at a low level of TCP/IP stack as IP-packet filters. Application

« Filter attributes
» Source/destination IP

» Source/destination port Transport I
~ TTL Internet I

» Protocols
> . Network Interface
O Application Layer Firewalls —l

« Work on the application level of the TCP/IP stack.

 Inspect all packets for improper content, a complex work!
O Application Firewalls

» The access control implemented by applications.

« TCP Wrapper (libwrap)

O
o
3

O
C
—
®
=
0O
@®
>

'®)
o
3

S
S
@
@
9

Firewalls — Rules

O Exclusive
» Only block the traffic matching the rulesets

O Inclusive
* Only allow the traffic matching the rulesets
« Offer much better control of the incoming/outgoing traffic

« Safer than exclusive one
» (Y) reduce the risk of allowing unwanted traffic to pass
» (N) increase the risk to block yourself with wrong configuration

] State

« Stateful
» Keep track of which connections are opened through the firewall
» Be vulnerable to Denial of Service (DoS) attacks

« Stateless

Firewalls — Packages

 FreeBSD
* IPFILTER (known as IPF)
« IPFIREWALL (known as IPFW) + Dummynet

« Packet Filter (known as PF)+ ALTQ
» migrated from OpenBSD
»v4.5 (In FreeBSD 9.x and later)
> http://lwww.openbsd.org/fag/pf/ v5.6

O
o
3
O
C
—
®
=
0O
@
>
—
@®

4 Linux
* Ipchains
* iptables
» nftables

http://www.openbsd.org/faq/pf/

Packet Filter (PF)

O Functionality

* Filtering packets
« NAT

O
o
=
o
=
(D
O
o)
=
1

* QoS: (ALTQ: Alternate Queuing)
 Failover (pfsync + carp)

PF in FreeBSD — Enable pf*

A In /etc/rc.conf (kernel modules loaded automatically)
pf_enable="YES"

pflog enable="YES"

pfsync_enable="YES"
 Kernel configurations

device pf

device pflog

device pfsync

The pf packet filter conzizte of three devices:

¥ The "pf' device providez fdevw/pf and the firewall code itzelf.
The "pflog' device provides the pflogl interface which logz packets.
The “pfevnc' device provides the pfeyncl interface used for

mynchronization of firewall state tables (over the net).
device '
device

device

PF in FreeBSD — Commands

1 /etc/rc.d/pf

« start/stop / restart / status / check / reload / resync

4 pfctl
- -e/-d
* -F {nat| rules | state | info | Tables | all | ...}
e -V -s {nat | rules | state | info | all | Anchors | Tables | ...}
« -v -n -f/etc/pf.conf
» -t<table>-T {add | delete| test} {ip ...}
» -t<table>-T {show |kill | flush]| ...}
» -k {host | network} [-k {host | network}]

e -a {anchor} ...

O
)
3
S
=
@
O
D
S

» Default anchor: -a "*'
» EX. -a ‘ftp-proxy/*’

'®)
)
3

S
S
@
O

PF in FreeBSD — Config ordering

O Macros

« user-defined variables, so they can be referenced and changed easily.
 Tables “table”

 similar to macros, but efficient and more flexible for many addresses.
O Options “set”

* tune the behavior of pf, default values are given.
1 Normalization “scrub”

» reassemble fragments and resolve or reduce traffic ambiguities.
O Queueing “altq”, “queue”

* rule-based bandwidth control.
O Translation (NAT) “rdr”, “nat”, “binat”
 specify how addresses are to be mapped or redirected to other addresses
 First match rules
O Filtering “antispoof”, “block™, “pass”
 rule-based blocking or passing packets
« Last match rules

PF in FreeBSD — L.ists

O Lists

« Allow the specification of multiple similar criteria within a rule
» multiple protocols, port numbers, addresses, etc.

« defined by specifying items within { } brackets.

* €g.
» pass out on rl0 proto { tcp, udp } from { 192.168.0.1, 10.5.32.6 } to any
» pass in on fxp0 proto tcp to port { 22 80 }

« Pitfall
» pass in on fxp0 from { 10.0.0.0/8, 1'10.1.2.3 }

» You mean (It means)
1. pass in on fxp0 from 10.0.0.0/8
2. block in on fxp0 from 10.1.2.3
2. pass in on fxp0 from 110.1.2.3

» Use table, instead.

'®)
o
3

S
S
@
@
9

PF in FreeBSD — Macros

'®)
o
3

S
S
@
@
9

] Macros

« user-defined variables that can hold IP addresses, port numbers,
Interface names, etc.

 reduce the complexity of a pf ruleset and also make maintaining a
ruleset much easier.

« Naming: start with [a-zA-Z] and may contain [a-zA-Z0-9]
* eg.

» ext_if = "fxp0*

» block in on $ext_if from any to any
« Macro of macros

» hostl ="192.168.1.1¢

» host2 ="192.168.1.2*
» all_hosts = "{" $hostl $host2 "}"

PF in FreeBSD — Tables (1)

'®)
)
3

S
S
@

1 Tables

 used to hold a group of IPv4 and/or IPv6 addresses
» hostname, inteface name, and keyword self

« Lookups against a table are very fast and consume less memory and
processor time than lists

« Two attributes
» persist: keep the table in memory even when no rules refer to it
» const: cannot be changed once the table is created
* €g.
» table <private> const { 10/8, 172.16/12, 192.168/16 }
» table <badhosts> persist
» block on fxp0 from { <private>, <badhosts> } to any
» table <spam> persist file "/etc/spammers" file "/etc/openrelays™

PF in FreeBSD — Tables (2)

] Tables — Address Matching

« An address lookup against a table will return the most narrowly
matching entry

* €g.
» table <goodguys> { 172.16.0.0/16, 1172.16.1.0/24, 172.16.1.100 }
» block in on dc0
» pass in on dcO from <goodguys>

* Result
» 172.16.50.5 passed
»172.16.1.25 blocked
»172.16.1.100 passed
» 10.1.4.55 blocked

PF in FreeBSD — Options

'®)
)
3

S
S
@
O

] Format

« control pf's operation, and specified in pf.conf using “set”
» Format: set option [sub-ops] value

1 Options
 loginterface — collect packets and gather byte count statistics
ruleset-optimization — ruleset optimizer
» none, basic, profile
» basic: remove dups, remove subs, combine into a table, re-order rules
 block-policy — default behavior for blocked packets
» drop, return
« skip on {ifname} — interfaces for which packets should not be filtered.
» eg. set skip on lo0

 timeout, limit, optimization, state-policy, hostid, require-order,
fingerprints, debug

PF in FreeBSD — Normalization

L Traffic Normalization

« |P fragment reassembly
» scrub in all

» Default behavior

» Fragments are buffered until they form a complete packet, and only the
completed packet is passed on to the filter.

» Advantage: filter rules have to deal only with complete packets, and
ignore fragments.

» Disadvantage: caching fragments is the additional memory cost

'®)
o
3

S
S
@
O
9

» The full reassembly method is the only method that currently works
with NAT.

PF in FreeBSD — Translation (1)

'®)
o
3

S
S
@
@
9

4 Translation
« Modify either the source or destination address of the packets

« The translation engine
1. modifies the specified address and/or port in the packet
2. passes it to the packet filter for evaluation

« Filter rules filter based on the translated address and port number
» Packets passed directly if the pass modifier is given in the rule

PF in FreeBSD — Translation (2)

'®)
)
3

S
S
@
O

 Various types of translation
* binat — bidirectional mapping between an external IP netblock and
an internal IP netblock
» binat on $ext_if from 10.1.2.150 to any -> 140.113.235.123
» binat on $ext_if from 192.168.1.0/28 to any -> 140.113.24.0/28
 nat — IP addresses are to be changes as the packet traverses the given
Interface
» no nat on $ext_if from 192.168.123.234 to any
» nat pass on $ext_if from 192.168.123.0/24 to any -> 140.113.235.21
« rdr —redirect packets to another destination and possibly different
port
» no rdr on $int_if proto tcp from any to $server port 80
» rdr on $int_if proto tcp from any to any port 80 -> 127.0.0.1 port 80

PF in FreeBSD — Translation (3)

] Evaluation

 Evaluation order of translation rules depends on the type

» binat rules first, and then either rdr rules for inbound packets or nat
rules for outbound packets

* Rules of the same type are evaluated in the order of appearing in the
ruleset

« The first matching rule decides what action is taken
 If no rule matches the packet, it is passed to the filter unmodified

O
)
3
S
=
@
O
D
S

PF in FreeBSD — Packet Filtering (1)

'®)
o
3

S
S
@
O
9

O pf has the ability to block and pass packets based on
 layer 3(ip, ip6) and layer 4(icmp, icmp6, tcp, udp) headers

L Each packet processed by the filter
» The filter rules are evaluated in sequential order
« The last matching rule decides what action is taken
 If no rule matches the packet, the default action is to pass

] Format

« {pass | block [drop | return]} [in|out] [log] [quick]
[on ifname] ... {hosts} ...

« The simplest to block everything by default: specify the first filter rule
» block all

PF in FreeBSD — Packet Filtering (2)

[States

« |If the packet Is passed, state is created unless the no state is specified
» The first time a packet matches pass, a state entry is created
» For subsequent packets, the filter checks whether each matches any state
» For TCP, also check its sequence numbers

» pf knows how to match ICMP replies to states
— Port unreachable for UDP
— ICMP echo reply for echo request

'®)
o
3

S
S
@
@
9

» Stores in BST for efficiency

'®)
o
3

S
S
@
@
9

PF in FreeBSD — Packet Filtering (3)

] Parameters

In | out — apply to imcoming or outgoing packets

log - generate log messages to pflog (pflog0, /var/log/pflog)
» Default: the packet that establishes the state is logged

quick — the rule Is considered the last matching rule

on ifname — apply only on the particular interface

Inet | inet6 — apply only on this address family

proto {tcp | udp | icmp | icmp6} — apply only on this protocol

PF in FreeBSD — Packet Filtering (4)

'®)
)
3

S
S
@

] Parameters
 hosts : { from host [port [op] #] to host [port [op] #] | all }

e host;

» host can be specified in CIDR notation, hostnames, interface names,
table, or keywords any, self, ...

» Hostnames are translated to address(es) at ruleset load time.

» When the address of an interface or hostname changes, the ruleset must
be reloaded

» When interface name is surrounded by (), the rule is automatically
updated whenever the interface changes its address
* port:
» ops: unary(=, 1=, <, <=, >, >=), and binary(:, ><, <>)
* eg.
» block in all
» pass in proto tcp from any port < 1024 to self port 33333:44444

PF in FreeBSD — Packet Filtering (5)

1 Parameters
« flags {<a>/ | any} — only apply to TCP packets
» Flags: (F)IN, (S)YN, (R)ST, (P)USH, (A)CK, (U)RG, (E)CE, C(W)R
» Check flags listed in , and see if the flags (not) in <a> is (not) set
> eqg.
— flags S/S : check SYN is set, ignore others.
— flags S/SA: check SYN is set and ACK is unset., ignore others

» Default flags S/SA for TCP
* icmp-type type code code
 icmp6-type type code code

» Apply to ICMP and ICMP6 packets
« label — for per-rule statistics

« {tag | tagged} string
» tag by nat, rdr, or binat, and identify by filter rules.

'®)
o
=

[®)
S
@
Q)
(D

PF in FreeBSD — Load Balance

1 Load balance
e For nat and rdr rules
* eg.

» rdr on $ext_if proto tcp from any to any port 80 \
->{10.1.2.155, 10.1.2.160, 10.1.2.161} round-robin

Q)
o
=
T
c
—
@
-
Q)
9)
-
—
@
=

PF in FreeBSD — Security

[For security consideration

* state modulation

» Create a high quality random sequence number

» Applying modulate state parameter to a TCP connection
* Syn proxy

» pf itself completes the handshake

» Applying synproxy state parameter to a TCP connection
— Include modulate state

O
o
3

O
C
—
@
=
0O
@®
>
—

PF in FreeBSD — Stateful tracking

 Stateful tracking options

» keep state, modulate state, and synproxy state support these options
» keep state must be specidied explicitly to apply options to a rule

* €g.
» table <bad_hosts> persist
» block quick from <bad_hosts>

» pass in on $ext_if proto tcp to ($ext_if) port ssh keep state \
(max-src-conn-rate 5/30, overload <bad_hosts> flush global)

'®)
o
3

S
S
@
@
9

PF in FreeBSD — Blocking spoofed

1 Blocking spoofed traffic

« antispoof for ifname

« antispoof for lo0
» block drop in on !'100 inet from 127.0.0.1/8 to any
» block drop in on ! |00 inet6 from ::1 to any

« antispoof for wi0 inet (IP: 10.0.0.1, netmask 255.255.255.0)
» block drop in on ! wi0 inet from 10.0.0.0/24 to any
» block drop in inet from 10.0.0.1 to any

- Pitfall:

» Rules created by the antispoof interfere with packets sent over loopback
interfaces to local addresses. One should pass these explicitly.

» set skip on 100

'®)
o
3

S
S
@
O
9

PF in FreeBSD — Anchors

 Besides the main ruleset, pf can load rulesets into anchor
attachment points

« An anchor is a container that can hold rules, address tables, and other
anchors

'®)
o
3

S
S
@
@
9

« The main ruleset is actually the default anchor

« An anchor can reference another anchor attachment point using
» nat-anchor
» rdr-anchor
» binat-anchor
» anchor
» load anchor <name> from <file>

'®)
)
3

S
S
@
O

PF in FreeBSD — Example

O Ex.

macro definitions
extdev="fxp0°*
server_ext=140.113.214.13’

options

set limit { states 10000, frags 5000 }
set loginterface $extdev

set block-policy drop

set skip on 100

tables
table <badhosts> persist file “/etc/badhosts.list”

filtering rules

block in all

pass out all

antispoof for $extdev

block log in on $extdev proto tcp from any to any port {139, 445}

block log in on $extdev proto udp from any to any port {137, 138}

block on $extdev quick from <badhosts> to any

pass in on $extdev proto tcp from 140.113.0.0/16 to any port {139, 445}
pass in on $extdev proto udp from 140.113.0.0/16 to any port {137, 138}

PF in FreeBSD — Debug by pflog

'®)
o
3

S
S
@
@
9

 Enable pflog in /etc/rc.conf (pflog.ko loaded automatically)

« pflog_enable="YES"
» Log to pflog0 interface
» tcpdump —i pflog0

« pflog_logfile="/var/log/pflog"
» tcpdump -r /var/log/pflog

 Create firewall rules
» Default configuration rules
» pf_rules="/etc/pf.conf"

« Sample files
» lusr/share/examples/pf/*

NAT on FreeBSD (1)

Other public service

O Setu p Un-protected area
» Network topology
 configuration

 Advanced redirection

configuration Public 140.113.235.4
Protected area

O
o
3
O
C
—
®
=
0O
@
)
—
@®
=

Uplink to Internet

192.168.1.1
Web server

Private 192.168.1.254

192.168.1.2
Ftp Server

192.168.1.101
PCl1

Private network Hosts

NAT on FreeBSD (2)

O In /etc/rc.conf
ifconfig_fxpO="inet 140.113.235.4"
ifconfig_fxpl="inet 192.168.1.254/24"
defaultrouter="140.113.235.254
gateway enable="YES"

'®)
o
3

S
S
@
O
9

macro definitions
extdev="fxp0°
d In /etc/pf_conf intranet='192.168.1.0/24¢
webserver=‘192.168.1.1°
* hat fipserver="192.168.1.2°
e rdr winxp=192.168.1.101"

- server_int=192.168.1.88’
* Dinat server_ext=*140.113.235.13’
nat rules
nat on $extdev inet from $intranet to any -> Sextdev
rdr on $extdev inet proto tcp to port 80 -> $webserver port 80
rdr on $extdev inet proto tcp to port 443 -> $webserver port 443
rdr on $extdev inet proto tcp to port 21 -> $Sftpserver port 21
rdr on $extdev inet proto tcp to port 3389 -> $winxp port 3389
binat on $extdev inet from $server int to any -> $server_ext

Q)
ALTQ: Alternate Queue — (1)

J Rebuild Kernel i1s needed
 http://www.freebsd.org/doc/handbook/firewalls-pf.html

altq(®). Enable the baze part of the hooks with the ALTQ option.
Individual disciplines must be built into the baze system and can not be
loaded az modules at thiz point. ALTO requires a sgtable TSC zo if wours is

: en or changes with CPU throttling then wou must alzo hawve the ALTQ NOPCC
option.
options ALTH

options ALTO CBG # Claze Bazed Queuneing

options ALTO RED # Fandom Early Detection

options ALTO RIO # EED In/Out

options ALTO HFSC # Hierarchical Packet Scheduler
options ALTO CDNE # Traffic conditioner

options ALTO FPRIG # Priority Queneing

options ALTO NOPCC # Required if the TEC iz nnuzable
opt ions 4 LT':' _]::'EE: Mz

http://www.freebsd.org/doc/handbook/firewalls-pf.html

'®)
)
3

S
S
@
O

ALTQ: Alternate Queue — (2)

O 0000

(.

altg on dcO cbg bandwidth 5Mb queue {std, http}

queue std bandwidth 10% cbq(default)

queue http bandwidth 60% priority 2 cbq(borrow) {employee,developer}
queue developers bandwidth 75% cbq(borrow)

queue employees bandwidth 15%

block return out on dcO inet all queue std

pass out on dcO inet proto tcp from $developerhosts to any port 80 queue
developers

pass out on dcO inet proto tcp from $employeehosts to any port 80 queue
employees

pass out on dcO inet proto tcp from any to any port 22
pass out on dcO inet proto tcp from any to any port 25

