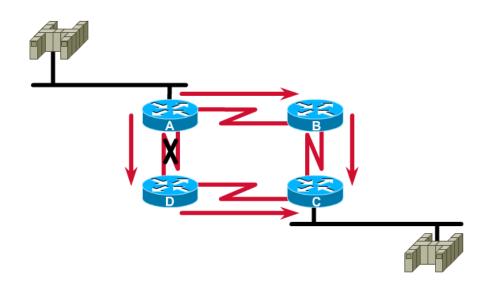

Routing

jnlin

Why dynamic route ? (1)

□ Static route is ok only when

- Network is small
- There is a single connection point to other network
- No redundant route



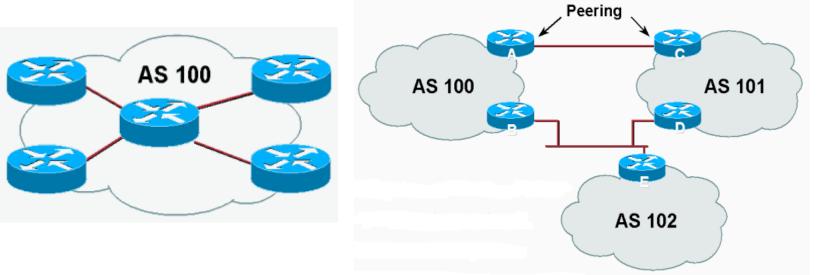
Why dynamic route ? (2)

Dynamic Routing

- Routers update their routing table with the information of adjacent routers
- Dynamic routing need a routing protocol for such communication
- Advantage:

> They can react and adapt to changing network condition

Routing Protocol

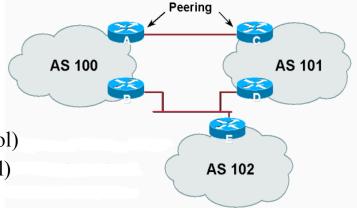

Used to change the routing table according to various routing information

- Specify detail of communication between routers
- Specify information changed in each communication,
 - Network reachability
 - > Network state
 - > Metric
- □ Metric
 - A measure of how good a particular route
 - > Hop count, bandwidth, delay, load, reliability, ...
- Each routing protocol may use different metric and exchange different information

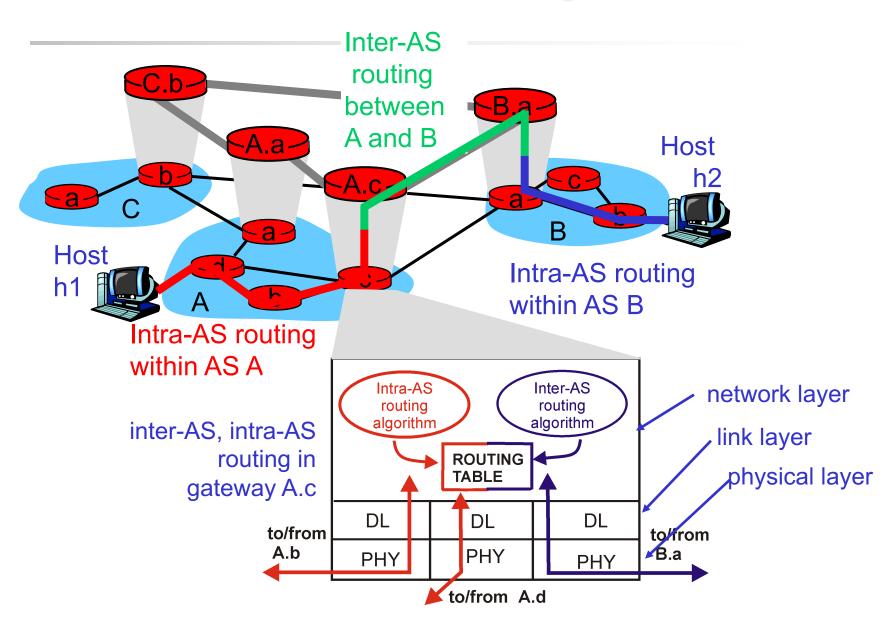
Autonomous System

□ Autonomous System (AS)

- Internet is organized into a collection of autonomous system
- An AS is a collection of networks with same routing policy
 - Single routing protocol
 - Normally administered by a single entity
 - Corporation or university campus
 - > All depend on how you want to manage routing

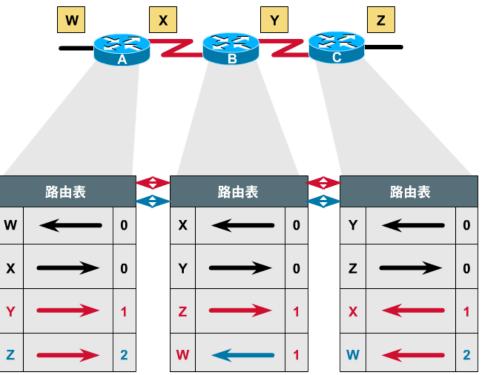

Category of Routing Protocols – by AS

□ AS-AS communication


- Communications between routers in different AS
- Interdomain routing protocols
- Exterior gateway protocols (EGP)
- Ex:
 - BGP (Border Gateway Protocol)

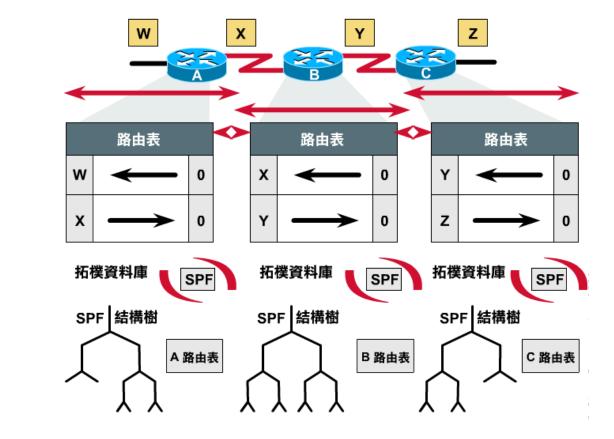
Inside AS communication

- Communication between routers in the same AS
- Intradomain routing protocols
- Interior gateway protocols (IGP)
- Ex:
 - > RIP (Routing Information Protocol)
 - IGRP (Interior Gateway Routing Protocol)
 - > OSPF (Open Shortest Path First Protocol)


Intra-AS and Inter-AS routing

Category of Routing Protocols – by information changed (1)

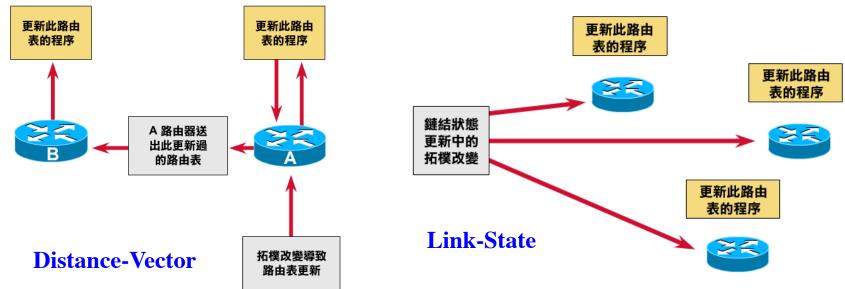
Distance-Vector Protocol


- Message contains a vector of distances, which is the cost to other network
- Each router updates its routing table based on these messages received from neighbors
- Protocols:
 - ≻ RIP
 - ≻ IGRP
 - ≻ BGP

Category of Routing Protocols – by information changed (2)

Link-State Protocol

- Broadcast their link state to neighbors and build a complete network map at each router using Dijkstra algorithm
- Protocols:
 > OSPF



Difference between Distance-Vector and Link-State

Difference

	Distance-Vector	Link-State
Update	updates neighbor (propagate new info.)	update all nodes
Convergence	Propagation delay cause slow convergence	Fast convergence
Complexity	simple	Complex

□ Information update sequence

Routing Protocols

RIP	IGP, DV
IGRP	IGP, DV
OSPF	IGP, LS
BGP	EGP

🗆 RIP

Routing Information Protocol

Category

- Interior routing protocol
- Distance-vector routing protocol
 - ≻ Using "hop-count" as the cost metric

□ Example of how RIP advertisements work

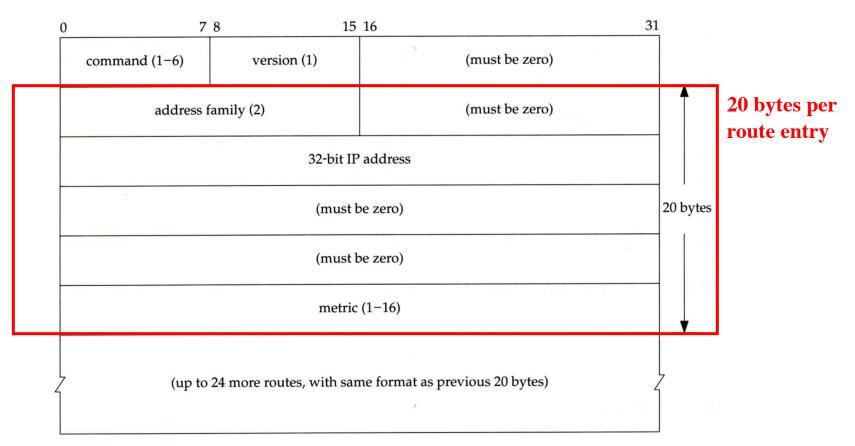
Destination network	Next router	# of hops to destination	Destination network	Next router	# of hops to destination	Destination network	Next router	# of hops to destination
1	А	2	30	C	4	1	А	2
20	В	2	1		1	20	В	2
30	В	7	10		1	30	Α	5

Routing table in router before Receiving advertisement

Advertisement from router A

Routing table after receiving advertisement

RIP - Example □ Another example N2 = 1 hop•N1 ends up with a route to N3 through R2 with hop count of 2 R1 N3 = 1 hopN2 N1 = 1 hop ends up with a route to N1 R2 through R1 with hop count of 2

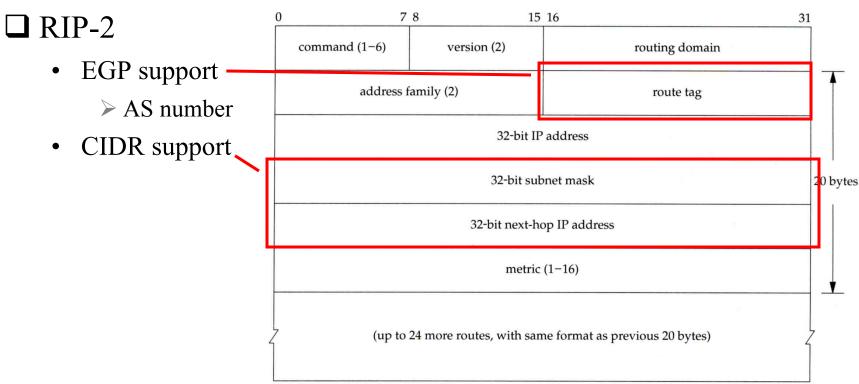

•N3

 $\overline{N2} = 1 \text{ hop}$

- Message Format

□ RIP message is carried in UDP datagram

- Command: 1 for request and 2 for reply
- Version: 1 or 2 (RIP-2)


- Operation

- □ routed RIP routing daemon
 - Operated in UDP port 520
- **Operation**
 - Initialization
 - Probe each interface
 - > send a request packet out each interface, asking for other router's complete routing table
 - Request received
 - > Send the entire routing table to the requestor
 - Response received
 - > Add, modify, delete to update routing table
 - Regular routing updates
 - > Router sends out their routing table to every neighbor every 30 seconds
 - Triggered updates
 - > Whenever a route entry's metric change, send out those changed part routing table

- Problems of RIP

IIssues

- 15 hop-count limits
- Take long time to stabilize after the failure of a router or link
- No CIDR

IGRP (1)

IGRP – Interior Gateway Routing Protocol

☐ Similar to RIP

- Interior routing protocol
- Distance-vector routing protocol
- Difference between RIP
 - Complex cost metric other than hop count
 - delay time, bandwidth, load, reliability
 - ≻ The formula

 $\left(\frac{bandwith_weight}{bandwith*(1-load)} + (delay_weight*delay)\right)*reliability$

- Use TCP to communicate routing information
- Cisco System's proprietary routing protocol

IGRP (2)

□ Advantage over RIP

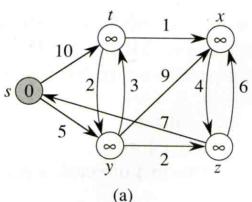
• Control over metrics

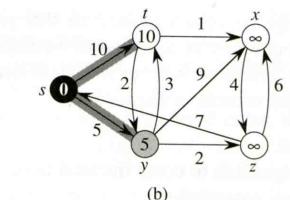
Disadvantage

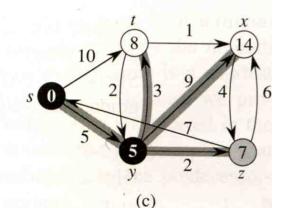
• Still classful and has propagation delay

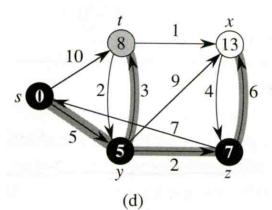
OSPF (1)

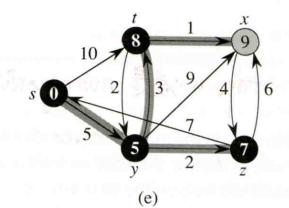
□ OSPF

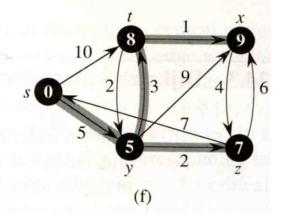

- Open Shortest Path First
- □ Category
 - Interior routing protocol
 - Link-State protocol
- □ Each interface is associated with a cost
 - Generally assigned manually
 - The sum of all costs along a path is the metric for that path
- □ Neighbor information is broadcast to all routers
 - Each router will construct a map of network topology
 - Each router run Dijkstra algorithm to construct the shortest path tree to each routers

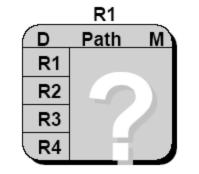

OSPF

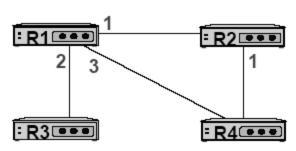

Dijkstra Algorithm

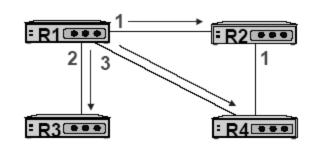

□ Single Source Shortest Path Problem


- Dijkstra algorithm use "greedy" strategy
- Ex:

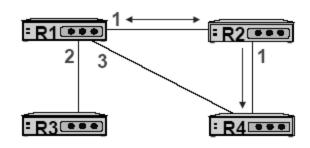




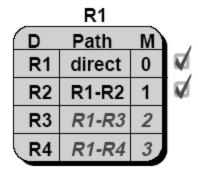


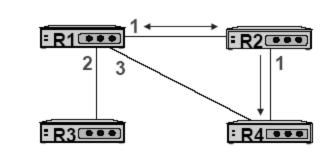

OSPF

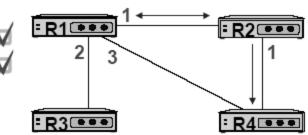
- Routing table update example (1)

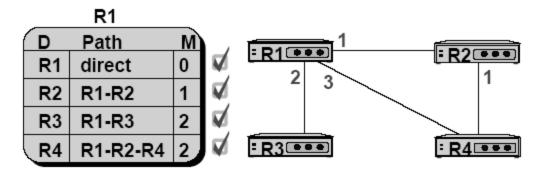


	R1		
D	Path	M	
R1	direct	0	Ø
R2	R1-R2	1	
R3	R1-R3	2	
R4	R1-R4	3	




	R1		
D	Path	M	
R1	direct	0	Ø
R2	R1-R2	1	Ø
R3	R1-R3	2	
R4	R1-R4	3	ļ


OSPF


- Routing table update example (2)

	R1		
D	Path	M	
R1	direct	0	¥
R2	R1-R2	1	¥
R3	R1-R3	2	
R4	R1-R2-R4	2	J

OSPF – Summary

□ Advantage

- Fast convergence
- CIDR support
- Multiple routing table entries for single destination, each for one type-of-service

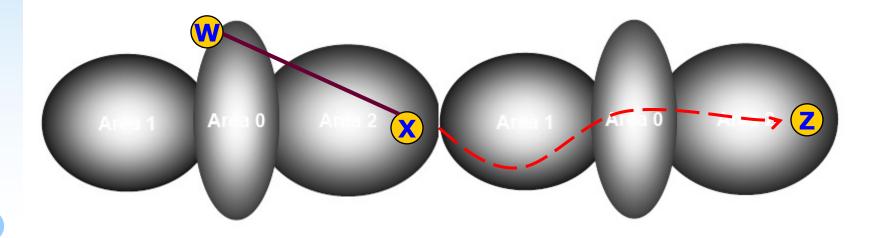
Load balancing when cost are equal among several routes

Disadvantage

• Large computation

BGP

BGP


- Border Gateway Protocol
- Exterior routing protocol
 - Now BGP-4
 - Exchange network reachability information with other BGP systems
- □ Routing information exchange
 - Message:
 - > Full path of autonomous systems that traffic must transit to reach destination
 - > Can maintain multiple route for a single destination
 - Exchange method
 - Using TCP
 - > Initial: entire routing table
 - Subsequent update: only sent when necessary
 - Advertise only optimal path
- □ Route selection
 - Shortest AS path

BGP

- Operation Example

□ How BGP work

- The whole Internet is a graph of autonomous systems
- X→Z
 - \triangleright Original: X \rightarrow A \rightarrow B \rightarrow C \rightarrow Z
 - > X advertise this best path to his neighbor W
- W→Z
 - \gg W \rightarrow X \rightarrow A \rightarrow B \rightarrow C \rightarrow Z

Routing Protocols Comparison

	RIP	IGRP	OSPF	BGP4
DV or LS	DV	DV	LS	Path Vec
TCP/UDP & Port	U - 520	IP - 9	T - 89	T - 179
Classless	No	No	Yes	Yes
Updates	Per.	Per.	Both	Trig.
Load Balance	No	Yes	Yes	No
Internal / External	Int.	Int.	Int.	Ext.
Metric	Hop Count	Load Errors Delay Bdwth	Sum of Int. Cost	Short. AS Path

routed

routed

□ Routing daemon

- Speak RIP (v1 and v2)
- Supplied with most every version of UNIX
- Two modes
 - Server mode (-s) & Quiet mode (-q)
 - > Both listen for broadcast, but server will distribute their information
- routed will add its discovered routes to kernel's routing table
- Support configuration file /etc/gateways

Provide static information for initial routing table

net Nname[/mask] gateway Gname metric value <passive | active | extern> host Hname gateway Gname metric value <passive | active | extern>