
國立陽明交通大學資工系資訊中心
Computer Center of Department of Computer Science, NYCU

Firewalls

1

2

Firewalls
● Firewall

○ hardware/software
○ choke point between secured and unsecured network
○ filter incoming and outgoing traffic
○ prevent communications which are forbidden by the security policy

● What it can be used to do
○ Incoming: protect and insulate the applications, services and machines

■ Such as telnet, NetBIOS
○ Outgoing: limit or disable access from the internal network

■ Such as MSN, ssh, ftp, facebook, SC2, D3
○ NAT (Network Address Translation)

3

Typical Network Design

Host Host

Host

Host Host

Host Host

Firewall

The Internet

4

Firewalls – Capabilities
● Network Layer Firewalls

○ Operate at a low level of TCP/IP stack as IP-packet filters.
○ Filter attributes

■ Source/destination IP
■ Source/destination port
■ TTL
■ Protocols
■ …

● Application Layer Firewalls
○ Work on the application level of the TCP/IP stack.
○ Inspect all packets for improper content, a complex work!

● Application Firewalls
○ The access control implemented by applications.
○ TCP Wrapper (libwrap)

Application

Transport

Internet

Network
Interface

TCP/IP

5

Firewalls – Rules
● Exclusive

○ Only block the traffic matching the rulesets
● Inclusive

○ Only allow the traffic matching the rulesets
○ Offer much better control of the incoming/outgoing traffic
○ Safer than exclusive one

■ (Y) reduce the risk of allowing unwanted traffic to pass
■ (N) increase the risk to block yourself with wrong configuration

● State
○ Stateful

■ Keep track of which connections are opened through the firewall
■ Be vulnerable to Denial of Service (DoS) attacks

○ Stateless

6

Firewalls – DMZ
● Demilitarized zone (Perimeter Network)

○ Between untrusted and trusted networks
○ Limited access to internal networks
○ Open service to WAN (Internet)

■ SMTP
■ POP3
■ HTTP
■ VPN Servers
■ …

● A layer of security
○ Limit the damage if system is compromised

WWW DNS

Mail

Host Host

Host

DMZ

Intranet
(LAN)

Firewall

Router

7

Firewalls – Bastion Host
● A workstation allow users connect to internal service

○ Limit the entry point of the internal network
○ Do logging and auditing on it
○ Located in DMZ or behind VPN service

○ https://github.com/jumpserver/jumpserver
● Using an SSH Bastion Host transparently

Client

Bastion Host

SSH Agent
Forwarding

Destination
Host

Destination
HostSSH Connection: SSH Agent Connection:

https://github.com/jumpserver/jumpserver

8

Firewalls – Packages
● Linux

○ iptables (kernel 2.4+)
○ ipchains (kernel < 2.4)
○ Firewalld
○ ufw

● FreeBSD
○ IPFILTER (known as IPF)
○ IPFIREWALL (known as IPFW) + Dummynet
○ Packet Filter (known as PF)+ ALTQ

■ migrated from OpenBSD
■ v4.5 (In FreeBSD 9.0)
■ http://www.openbsd.org/faq/pf/ v5.0

國立陽明交通大學資工系資訊中心
Computer Center of Department of Computer Science, NYCU

iptables in Linux

9

10

iptables
● User-space software that control Linux kernel firewall

○ Control Linux kernel Netfilter modules
● Support kernel version 2.4+

○ Replace ipchains and ipfwadm
● iptables allows system administrators to define tables containing

chains of rules for the treatment of packets

11

Packet flow in Netfilter

File:Netfilter-packet-flow.svg - Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Netfilter-packet-flow.svg

12

Xtables Architecture
● Xtables

○ v4, v6, arp, eb
○ IPv4, IPv6 are different tables

● Tables
○ filter, nat, mangle

● Chains
○ PREROUTING, OUTPUT, FORWARD, INPUT, POSTROUTING

● Rules
○ e.g., iptables -A INPUT -i lo -j ACCEPT

13

Xtables Architecture – Filter
● Filter Table

○ The default table of iptables command
○ For packets filter

■ INPUT
● Packets that come in (to local)

■ OUTPUT
● Packets that go out (from local)

■ FORWARD
● Packets that pass through (from others to others)

14

Xtables Architecture – NAT
● NAT tables

○ For IP masquerade
■ PREROUTING

● Packets that will go into the routing tables
■ POSTROUTING

● Packets that have left the routing tables
■ OUTPUT

● Packets that go out (from local)

15

Xtables Architecture – Mangle
● Mangle Table

○ For special purpose, e.g., add or remove some special tags from
packets
■ PREROUTING
■ OUTPUT
■ FORWARD
■ INPUT
■ POSTROUTING

16

iptables Flowchart

17

iptables – List
● iptables

○ -t tables : Target table
○ -L : List all rules
○ -n : Don't lookup domain names
○ -v : Show details

sudo iptables -L -n
Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Chain BLOCK (1 references)
target prot opt source destination
DROP all -- 0.0.0.0/0 0.0.0.0/0
target prot opt source destination

18

iptables – Init
● iptables

○ -F : Flush all rules
○ -X : Flush all custom chains
○ -Z : Flush all statistics data for all chains

● iptables
○ -P [INPUT,OUTPUT,FORWARD] [ACCEPT, DROP]

■ Change the default policy of the target chain

19

iptables – Save and Restore
● iptables-restore

○ Restore from restore file
● iptables-save

○ Export all rules and generate restore file
○ Some system will load restore file at boot

■ Ex: CentOS /etc/sysconfig/iptables /etc/sysconfig/ip6tables
● Restore file syntax

○ # comments
○ * table name
○ : chain default-policy [pkt:byte]
○ Rules
○ COMMIT (End of file)

20

iptables – Module
● User may need special rule to filter packets
● Split several feature into different module
● Stateful

○ Packets states tracking
○ Traffic statistics

● Use -m to access module
○ iptables -A INPUT -m conntrack …
○ iptables -A INPUT -m recent …

● http://ipset.netfilter.org/iptables-extensions.man.html

http://ipset.netfilter.org/iptables-extensions.man.html

21

iptables – Rules (1/2)
● Modify

○ -A, --append
○ -C, --check
○ -D, --delete
○ -I, --insert
○ -R, --replace

● Jump
○ -j, --jump

■ To user-defined chain
■ ACCEPT, DROP, REJECT, RETURN, SNAT, DNAT, MASQUERADE

○ -g, --goto
■ Unlike the --jump option return will not continue processing in this chain but

instead in the chain that called us via --jump.

22

iptables – Rules (2/2)
● Filter

○ -i, -o [if] : incoming interface / outgoing interface
■ -i ens192 -o docker0

○ -s, -d [net] : Source / Destination
■ -s 192.168.0.1/24 –d 140.113.1.1

○ --sport, --dport [port] : Source port / Destination port
■ --sport 22 --dport 80

○ -p [protocol] : tcp, udp, icmp, all
■ -p icmp

○ ! (not) : Invert matching
■ ! -s 140.113.1.0/24
■ ! -i eth0
■ ! -p udp

23

iptables – Custom chain
● Create

○ -N my-chain
○ Define in restore file

● When iptables reaches the end of user-defined chain, flow returns
to the next rule in the calling chain

● E.g.
○ -A INPUT -j badguy
○ -A INPUT -j ACCEPT
○ -A badguy -s 1.2.3.4 -j DROP
○ -A badguy -s 140.112.0.0/24 -j DROP
○ …

24

Example: Hello world
● Allow outgoing packets but deny all incoming packets, except the

packets that reply users requests
○ -A INPUT -i lo -j ACCEPT
○ -A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j

ACCEPT
● State

○ NEW : New connection
○ ESTABLISHED : Old connection
○ RELATED : New connection create by ESTABLISHED session
○ INVALID

25

Example: NAT
● Provides NAT from eth0 to eth1

○ sysctl -w net.ipv4.ip_forward=1
○ -t NAT -A POSTROUTING -i eth0 -o eth1 -j MASQUERADE

● NAT
○ SNAT --to-source : Change Source IP Address
○ DNAT --to-destination : Change Destination IP Address
○ MASQUERADE : Change Source IP Address (based on outgoing

device IP Address)

26

Example: Prevent DDoS Attack
● Append traffic limit (10 times / 60 sec) to SSH services

○ -A INPUT -p tcp --dport 22 -m state --state NEW -m recent --set --
name RECENT --rsource

○ -A INPUT -p tcp --dport 22 -m state --state NEW -m recent --rcheck
--seconds 60 --hitcount 10 --name RECENT --rsource -j DROP

● xt_recent
○ Record every connection
○ Filter connection by connecting history

27

Other tools
● These tools help user to manage iptables rules

○ UFW (Uncomplicated Firewall) (Ubuntu)
■ Easy to use
■ Hard to customize

○ Firewalld (Redhat)
■ Another way to manage your firewall

● Sometime even with these tools, you still need to understand
iptables, otherwise you cannot manage complicated firewall rules
like docker network, kubernetes

國立陽明交通大學資工系資訊中心
Computer Center of Department of Computer Science, NYCU

PF in FreeBSD

28

29

Packet Filter (PF)
● Functionality

○ Filtering packets
○ NAT
○ Load balance
○ QoS: (ALTQ: Alternate Queuing)
○ Failover (pfsync + carp)

30

PF in FreeBSD – Enable pf*
● In /etc/rc.conf (kernel modules loaded automatically)

○ pf_enable="YES"
○ pflog_enable="YES"
○ pfsync_enable="YES"

● Kernel configurations
○ device pf
○ device pflog
○ device pfsync

31

PF in FreeBSD – Commands
● /etc/rc.d/pf

○ start / stop / restart / status / check / reload / resync
● pfctl

○ -e / -d
○ -F {nat | rules | state | info | Tables | all | …}
○ -v -s {nat | rules | state | info | all | Anchors | Tables | …}
○ -v -n -f /etc/pf.conf
○ -t <table> -T {add | delete| test} {ip …}
○ -t <table> -T {show | kill | flush | …}
○ -k {host | network} [-k {host | network}]
○ -a {anchor} …

■ Default anchor: -a '*'
■ E.g. -a 'ftp-proxy/*'

32

PF in FreeBSD – Config ordering
● Macros

○ user-defined variables, so they can be referenced and changed easily.
● Tables "table"

○ similar to macros, but efficient and more flexible for many addresses.
● Options "set"

○ tune the behavior of pf, default values are given.
● Normalization "scrub"

○ reassemble fragments and resolve or reduce traffic ambiguities.
● Queueing "altq", "queue"

○ rule-based bandwidth control.
● Translation (NAT) "rdr", "nat", "binat"

○ specify how addresses are to be mapped or redirected to other addresses
○ First match rules

● Filtering "antispoof", "block", "pass"
○ rule-based blocking or passing packets
○ Last match rules

33

PF in FreeBSD – Lists
● Lists

○ Allow the specification of multiple similar criteria within a rule
■ multiple protocols, port numbers, addresses, etc.

○ defined by specifying items within { } brackets.
○ E.g.

■ pass out on rl0 proto { tcp, udp } from { 192.168.0.1, 10.5.32.6 } to any
■ pass in on fxp0 proto tcp to port { 22 80 }

○ Pitfall
■ pass in on fxp0 from { 10.0.0.0/8, !10.1.2.3 }
■ You mean (It means)

1. pass in on fxp0 from 10.0.0.0/8
2. block in on fxp0 from 10.1.2.3
3. pass in on fxp0 from !10.1.2.3

■ Use table, instead.

34

PF in FreeBSD – Macros
● Macros

○ user-defined variables that can hold IP addresses, port numbers, interface
names, etc.

○ reduce the complexity of a pf ruleset and also make maintaining a ruleset
much easier.

○ Naming: start with [a-zA-Z] and may contain [a-zA-Z0-9_]
○ E.g.

■ ext_if = "fxp0"
■ block in on $ext_if from any to any

○ Macro of macros
■ host1 = "192.168.1.1"
■ host2 = "192.168.1.2"
■ all_hosts = "{" $host1 $host2 "}"

35

PF in FreeBSD – Tables (1)
● Tables

○ used to hold a group of IPv4 and/or IPv6 addresses
■ hostname, interface name, and keyword self

○ Lookups against a table are very fast and consume less memory and
processor time than lists

○ Two attributes
■ persist: keep the table in memory even when no rules refer to it
■ const: cannot be changed once the table is created

○ E.g.
■ table <private> const { 10/8, 172.16/12, 192.168/16 }
■ table <badhosts> persist
■ block on fxp0 from { <private>, <badhosts> } to any
■ table <spam> persist file "/etc/spammers" file "/etc/openrelays”

36

PF in FreeBSD – Tables (2)
● Tables – Address Matching

○ An address lookup against a table will return the most narrowly
matching entry
■ E.g.

○ Result

table <goodguys> { 172.16.0.0/16, !172.16.1.0/24, 172.16.1.100 }
block in on dc0
pass in on dc0 from <goodguys>

172.16.50.5 passed
172.16.1.25 blocked
172.16.1.100 passed
10.1.4.55 blocked

37

PF in FreeBSD – Options
● Format

○ control pf's operation, and specified in pf.conf using “set”
■ Format: set option [sub-ops] value

● Options
○ loginterface – collect packets and gather byte count statistics
○ ruleset-optimization – ruleset optimizer

■ none, basic, profile
■ basic: remove dups, remove subs, combine into a table, re-order rules

○ block-policy – default behavior for blocked packets
■ drop, return

○ skip on {ifname} – interfaces for which packets should not be filtered.
■ E.g. set skip on lo0

○ timeout, limit, optimization, state-policy, hostid, require-order, fingerprints, debug

38

PF in FreeBSD – Normalization
● Traffic Normalization

○ IP fragment reassembly
■ scrub in all

○ Default behavior
■ Fragments are buffered until they form a complete packet, and

only the completed packet is passed on to the filter.
■ Advantage: filter rules have to deal only with complete packets,

and ignore fragments.
■ Disadvantage: caching fragments is the additional memory cost
■ The full reassembly method is the only method that currently

works with NAT.

39

PF in FreeBSD – Translation (1)
● Translation

○ Modify either the source or destination address of the packets
○ The translation engine

1. modifies the specified address and/or port in the packet
2. passes it to the packet filter for evaluation

○ Filter rules filter based on the translated address and port number
○ Packets passed directly if the pass modifier is given in the rule

40

PF in FreeBSD – Translation (2)
● Various types of translation

○ binat – bidirectional mapping between an external IP netblock and an
internal IP netblock
■ binat on $ext_if from 10.1.2.150 to any -> 140.113.235.123
■ binat on $ext_if from 192.168.1.0/28 to any -> 140.113.24.0/28

○ nat – IP addresses are to be changes as the packet traverses the given
interface
■ no nat on $ext_if from 192.168.123.234 to any
■ nat pass on $ext_if from 192.168.123.0/24 to any -> 140.113.235.21

○ rdr – redirect packets to another destination and possibly different port
■ no rdr on $int_if proto tcp from any to $server port 80
■ rdr on $int_if proto tcp from any to any port 80 -> 127.0.0.1 port 80

41

PF in FreeBSD – Translation (3)
● Evaluation

○ Evaluation order of translation rules depends on the type
■ binat rules first, and then either rdr rules for inbound packets or nat

rules for outbound packets
○ Rules of the same type are evaluated in the order of appearing in the

ruleset
○ The first matching rule decides what action is taken
○ If no rule matches the packet, it is passed to the filter unmodified

42

PF in FreeBSD – Packet Filtering (1)
● pf has the ability to block and pass packets based on

○ layer 3(ip, ip6) and layer 4(icmp, icmp6, tcp, udp) headers
● Each packet processed by the filter

○ The filter rules are evaluated in sequential order
○ The last matching rule decides what action is taken
○ If no rule matches the packet, the default action is to pass

● Format
○ {pass | block [drop | return]} [in | out] [log] [quick] [on ifname] …

{hosts} …
○ The simplest to block everything by default: specify the first filter rule

■ block all

43

PF in FreeBSD – Packet Filtering (2)
● States

○ If the packet is passed, state is created unless the no state is specified
■ The first time a packet matches pass, a state entry is created
■ For subsequent packets, the filter checks whether each matches any

state
■ For TCP, also check its sequence numbers
■ pf knows how to match ICMP replies to states

● Port unreachable for UDP
● ICMP echo reply for echo request
● …

■ Stores in BST for efficiency

44

PF in FreeBSD – Packet Filtering (3)
● Parameters

○ in | out – apply to incoming or outgoing packets
○ log - generate log messages to pflog (pflog0, /var/log/pflog)

■ Default: the packet that establishes the state is logged
○ quick – the rule is considered the last matching rule
○ on ifname – apply only on the particular interface
○ inet | inet6 – apply only on this address family
○ proto {tcp | udp | icmp | icmp6} – apply only on this protocol

45

PF in FreeBSD – Packet Filtering (4)
● Parameters

○ hosts : { from host [port [op] #] to host [port [op] #] | all }
○ host:

■ host can be specified in CIDR notation, hostnames, interface names, table, or
keywords any, self, …

■ Hostnames are translated to address(es) at ruleset load time.
■ When the address of an interface or hostname changes, the ruleset must be reloaded
■ When interface name is surrounded by (), the rule is automatically updated

whenever the interface changes its address
○ port:

■ ops: unary(=, !=, <, <=, >, >=), and binary(:, ><, <>)
○ E.g.

■ block in all
■ pass in proto tcp from any port < 1024 to self port 33333:44444

46

PF in FreeBSD – Packet Filtering (5)
● Parameters

○ flags {<a>/ | any} – only apply to TCP packets
■ Flags: (F)IN, (S)YN, (R)ST, (P)USH, (A)CK, (U)RG, (E)CE, C(W)R
■ Check flags listed in , and see if the flags (not) in <a> is (not) set
■ E.g.

● flags S/S : check SYN is set, ignore others.
● flags S/SA: check SYN is set and ACK is unset., ignore others

■ Default flags S/SA for TCP
○ icmp-type type code code
○ icmp6-type type code code

■ Apply to ICMP and ICMP6 packets
○ label – for per-rule statistics
○ {tag | tagged} string

■ tag by nat, rdr, or binat, and identify by filter rules.

47

PF in FreeBSD – Load Balance
● Load balance

○ For nat and rdr rules
○ E.g.

■ rdr on $ext_if proto tcp from any to any port 80 ->
{10.1.2.155, 10.1.2.160, 10.1.2.161} round-robin

48

PF in FreeBSD – Security
● For security consideration

○ state modulation
■ Create a high quality random sequence number
■ Applying modulate state parameter to a TCP connection

○ syn proxy
■ pf itself completes the handshake
■ Applying synproxy state parameter to a TCP connection

● Include modulate state

49

PF in FreeBSD – Stateful tracking
● Stateful tracking options

○ keep state, modulate state, and synproxy state support these options
■ keep state must be specidied explicitly to apply options to a rule

● E.g.
○ table <bad_hosts> persist
○ block quick from <bad_hosts>
○ pass in on $ext_if proto tcp to ($ext_if) port ssh keep state

(max-src-conn-rate 5/30, overload <bad_hosts> flush global)

50

PF in FreeBSD – Blocking spoofed
● Blocking spoofed traffic

○ antispoof for ifname
○ antispoof for lo0

■ block drop in on ! lo0 inet from 127.0.0.1/8 to any
■ block drop in on ! lo0 inet6 from ::1 to any

○ antispoof for wi0 inet (IP: 10.0.0.1, netmask 255.255.255.0)
■ block drop in on ! wi0 inet from 10.0.0.0/24 to any
■ block drop in inet from 10.0.0.1 to any

○ Pitfall:
■ Rules created by the antispoof interfere with packets sent over loopback

interfaces to local addresses. One should pass these explicitly.
■ set skip on lo0

51

PF in FreeBSD – Anchors
● Besides the main ruleset, pf can load rulesets into anchor

attachment points
○ An anchor is a container that can hold rules, address tables, and other

anchors
○ The main ruleset is actually the default anchor
○ An anchor can reference another anchor attachment point using

■ nat-anchor
■ rdr-anchor
■ binat-anchor
■ anchor
■ load anchor <name> from <file>

52

PF in FreeBSD – Example
macro definitions
extdev='fxp0'
server_ext='140.113.214.13'

options
set limit { states 10000, frags 5000 }
set loginterface $extdev
set block-policy drop
set skip on lo0

tables
table <badhosts> persist file "/etc/badhosts.list"

filtering rules
block in all
pass out all
antispoof for $extdev
block log in on $extdev proto tcp from any to any port {139, 445}
block log in on $extdev proto udp from any to any port {137, 138}
block on $extdev quick from <badhosts> to any
pass in on $extdev proto tcp from 140.113.0.0/16 to any port {139, 445}
pass in on $extdev proto udp from 140.113.0.0/16 to any port {137, 138}

53

PF in FreeBSD – Debug by pflog
● Enable pflog in /etc/rc.conf (pflog.ko loaded automatically)

○ pflog_enable="YES"
■ Log to pflog0 interface
■ tcpdump -i pflog0

○ pflog_logfile="/var/log/pflog"
■ tcpdump -r /var/log/pflog

● Create firewall rules
○ Default configuration rules

■ pf_rules="/etc/pf.conf"
○ Sample files

■ /usr/share/examples/pf/*

54

NAT on FreeBSD (1)
● Setup

○ Network topology
○ configuration
○ Advanced redirection
○ configuration

Web Server
192.168.1.1

FTP Server
192.168.1.2

PC1
192.168.1.101

Switch

NAT Server
Public: 140.113.235.4
Private: 192.168.1.254

Protected area

ipwf firewall

Switch Uplink to
Internet

Other Public Service
Unprotected area

Private Network Hosts

55

NAT on FreeBSD (2)
● In /etc/rc.conf

○ ifconfig_fxp0="inet 140.113.235.4"
○ ifconfig_fxp1="inet 192.168.1.254/24"
○ defaultrouter="140.113.235.254"
○ gateway_enable="YES"

● In /etc/pf.conf
○ nat
○ rdr
○ binat

macro definitions
extdev='fxp0'
intranet='192.168.1.0/24'
webserver='192.168.1.1'
ftpserver='192.168.1.2'
winxp='192.168.1.101'
server_int='192.168.1.88'
server_ext='140.113.235.13'

nat rules
nat on $extdev inet from $intranet to any -> $extdev
rdr on $extdev inet proto tcp to port 80 -> $webserver port 80
rdr on $extdev inet proto tcp to port 443 -> $webserver port 443
rdr on $extdev inet proto tcp to port 21 -> $ftpserver port 21
rdr on $extdev inet proto tcp to port 3389 -> $winxp port 3389
binat on $extdev inet from $server_int to any -> $server_ext

56

ALTQ: Alternate Queue – (1)
● Rebuild Kernel is needed

○ http://www.freebsd.org/doc/handbook/firewalls-pf.html
○ ALTQ related kernel options and supported devices

■ man 4 altq
altq(9). Enable the base part of the hooks with the ALTQ option.
Individual disciplines must be built into the base system and can not be
loaded as modules at this point. In order to build a SMP kernel you must
also have the ALTQ_NOPCC option.
options ALTQ
options ALTQ_CBQ # Class Based Queueing
options ALTQ_RED # Random Early Drop
options ALTQ_RIO # RED In/Out
options ALTQ_HFSC # Hierarchical Packet Scheduler
options ALTQ_CDNR # Traffic conditioner
options ALTQ_PRIQ # Priority Queueing
options ALTQ_NOPCC # Required if the TSC is unusable
options ALTQ_DEBUG

http://www.freebsd.org/doc/handbook/firewalls-pf.html

57

ALTQ: Alternate Queue – (2)
● altq on dc0 cbq bandwidth 5Mb queue {std, http}
● queue std bandwidth 10% cbq(default)
● queue http bandwidth 60% priority 2 cbq(borrow) {employee,developer}
● queue developers bandwidth 75% cbq(borrow)
● queue employees bandwidth 15%
● block return out on dc0 inet all queue std
● pass out on dc0 inet proto tcp from $developerhosts to any port 80 queue

developers
● pass out on dc0 inet proto tcp from $employeehosts to any port 80 queue

employees
● pass out on dc0 inet proto tcp from any to any port 22
● pass out on dc0 inet proto tcp from any to any port 25

	Firewalls
	Firewalls
	Typical Network Design
	Firewalls – Capabilities
	Firewalls – Rules
	Firewalls – DMZ
	Firewalls – Bastion Host
	Firewalls – Packages
	iptables in Linux
	iptables
	Packet flow in Netfilter
	Xtables Architecture
	Xtables Architecture – Filter
	Xtables Architecture – NAT
	Xtables Architecture – Mangle
	iptables Flowchart
	iptables – List
	iptables – Init
	iptables – Save and Restore
	iptables – Module
	iptables – Rules (1/2)
	iptables – Rules (2/2)
	iptables – Custom chain
	Example: Hello world
	Example: NAT
	Example: Prevent DDoS Attack
	Other tools
	PF in FreeBSD
	Packet Filter (PF)
	PF in FreeBSD – Enable pf*
	PF in FreeBSD – Commands
	PF in FreeBSD – Config ordering
	PF in FreeBSD – Lists
	PF in FreeBSD – Macros
	PF in FreeBSD – Tables (1)
	PF in FreeBSD – Tables (2)
	PF in FreeBSD – Options
	PF in FreeBSD – Normalization
	PF in FreeBSD – Translation (1)
	PF in FreeBSD – Translation (2)
	PF in FreeBSD – Translation (3)
	PF in FreeBSD – Packet Filtering (1)
	PF in FreeBSD – Packet Filtering (2)
	PF in FreeBSD – Packet Filtering (3)
	PF in FreeBSD – Packet Filtering (4)
	PF in FreeBSD – Packet Filtering (5)
	PF in FreeBSD – Load Balance
	PF in FreeBSD – Security
	PF in FreeBSD – Stateful tracking
	PF in FreeBSD – Blocking spoofed
	PF in FreeBSD – Anchors
	PF in FreeBSD – Example
	PF in FreeBSD – Debug by pflog
	NAT on FreeBSD (1)
	NAT on FreeBSD (2)
	ALTQ: Alternate Queue – (1)
	ALTQ: Alternate Queue – (2)

