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Firewalls
● Firewall

○ hardware/software
○ choke point between secured and unsecured network 
○ filter incoming and outgoing traffic
○ prevent communications which are forbidden by the security policy

● What it can be used to do
○ Incoming: protect and insulate the applications, services and machines

■ Such as telnet, NetBIOS
○ Outgoing: limit or disable access from the internal network

■ Such as MSN, ssh, ftp, facebook, SC2, D3
○ NAT (Network Address Translation)
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Firewalls – Capabilities
● Network Layer Firewalls

○ Operate at a low level of TCP/IP stack as IP-packet filters.
○ Filter attributes

■ Source/destination IP
■ Source/destination port
■ TTL
■ Protocols
■ …

● Application Layer Firewalls
○ Work on the application level of the TCP/IP stack.
○ Inspect all packets for improper content, a complex work!

● Application Firewalls
○ The access control implemented by applications.
○ TCP Wrapper (libwrap)
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Firewalls – Rules
● Exclusive

○ Only block the traffic matching the rulesets
● Inclusive

○ Only allow the traffic matching the rulesets
○ Offer much better control of the incoming/outgoing traffic
○ Safer than exclusive one

■ (Y) reduce the risk of allowing unwanted traffic to pass
■ (N) increase the risk to block yourself with wrong configuration

● State
○ Stateful

■ Keep track of which connections are opened through the firewall
■ Be vulnerable to Denial of Service (DoS) attacks

○ Stateless
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Firewalls – DMZ
● Demilitarized zone (Perimeter Network)

○ Between untrusted and trusted networks
○ Limited access to internal networks
○ Open service to WAN (Internet)

■ SMTP
■ POP3
■ HTTP
■ VPN Servers
■ …

● A layer of security
○ Limit the damage if system is compromised
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Firewalls – Bastion Host
● A workstation allow users connect to internal service

○ Limit the entry point of the internal network
○ Do logging and auditing on it
○ Located in DMZ or behind VPN service

○ https://github.com/jumpserver/jumpserver
● Using an SSH Bastion Host transparently

Client

Bastion Host

SSH Agent
Forwarding

Destination
Host

Destination
HostSSH Connection: SSH Agent Connection:

https://github.com/jumpserver/jumpserver
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Firewalls – Packages
● Linux

○ iptables (kernel 2.4+)
○ ipchains (kernel < 2.4)
○ Firewalld
○ ufw

● FreeBSD
○ IPFILTER (known as IPF)
○ IPFIREWALL (known as IPFW) + Dummynet
○ Packet Filter (known as PF)+ ALTQ

■ migrated from OpenBSD
■ v4.5  (In FreeBSD 9.0)
■ http://www.openbsd.org/faq/pf/ v5.0
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iptables
● User-space software that control Linux kernel firewall

○ Control Linux kernel Netfilter modules
● Support kernel version 2.4+

○ Replace ipchains and ipfwadm
● iptables allows system administrators to define tables containing 

chains of rules for the treatment of packets
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Packet flow in Netfilter

File:Netfilter-packet-flow.svg - Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Netfilter-packet-flow.svg
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Xtables Architecture
● Xtables

○ v4, v6, arp, eb
○ IPv4, IPv6 are different tables

● Tables
○ filter, nat, mangle

● Chains
○ PREROUTING, OUTPUT, FORWARD, INPUT, POSTROUTING

● Rules
○ e.g., iptables -A INPUT -i lo -j ACCEPT
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Xtables Architecture – Filter
● Filter Table

○ The default table of iptables command
○ For packets filter

■ INPUT
● Packets that come in (to local)

■ OUTPUT
● Packets that go out (from local)

■ FORWARD
● Packets that pass through (from others to others)



14

Xtables Architecture – NAT
● NAT tables

○ For IP masquerade
■ PREROUTING

● Packets that will go into the routing tables
■ POSTROUTING

● Packets that have left the routing tables
■ OUTPUT

● Packets that go out (from local)
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Xtables Architecture – Mangle
● Mangle Table

○ For special purpose, e.g., add or remove some special tags from 
packets
■ PREROUTING
■ OUTPUT
■ FORWARD
■ INPUT
■ POSTROUTING
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iptables Flowchart
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iptables – List
● iptables

○ -t tables : Target table
○ -L : List all rules
○ -n : Don't lookup domain names
○ -v : Show details

sudo iptables -L -n
Chain INPUT (policy ACCEPT)
target     prot opt source               destination
ACCEPT     all  -- 0.0.0.0/0            0.0.0.0/0
ACCEPT     all  -- 0.0.0.0/0            0.0.0.0/0 
Chain FORWARD (policy ACCEPT)
target     prot opt source               destination

Chain OUTPUT (policy ACCEPT)
target     prot opt source               destination

Chain BLOCK (1 references)
target     prot opt source               destination
DROP       all  -- 0.0.0.0/0            0.0.0.0/0
target     prot opt source               destination
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iptables – Init
● iptables

○ -F : Flush all rules
○ -X : Flush all custom chains
○ -Z : Flush all statistics data for all chains

● iptables
○ -P [INPUT,OUTPUT,FORWARD] [ACCEPT, DROP]

■ Change the default policy of the target chain
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iptables – Save and Restore
● iptables-restore

○ Restore from restore file
● iptables-save

○ Export all rules and generate restore file
○ Some system will load restore file at boot

■ Ex: CentOS /etc/sysconfig/iptables /etc/sysconfig/ip6tables
● Restore file syntax

○ #  comments
○ *  table name
○ : chain default-policy [pkt:byte]
○ Rules
○ COMMIT (End of file)
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iptables – Module
● User may need special rule to filter packets
● Split several feature into different module
● Stateful

○ Packets states tracking
○ Traffic statistics

● Use -m to access module
○ iptables -A INPUT -m conntrack …
○ iptables -A INPUT -m recent …

● http://ipset.netfilter.org/iptables-extensions.man.html

http://ipset.netfilter.org/iptables-extensions.man.html
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iptables – Rules (1/2)
● Modify

○ -A, --append
○ -C, --check
○ -D, --delete
○ -I, --insert
○ -R, --replace

● Jump
○ -j, --jump

■ To user-defined chain
■ ACCEPT, DROP, REJECT, RETURN, SNAT, DNAT, MASQUERADE

○ -g, --goto
■ Unlike the --jump option return will not continue processing in this chain but  

instead  in  the  chain that called us via --jump.
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iptables – Rules (2/2)
● Filter

○ -i, -o [if] : incoming interface / outgoing interface
■ -i ens192 -o docker0

○ -s, -d [net] : Source / Destination
■ -s 192.168.0.1/24 –d 140.113.1.1

○ --sport, --dport [port] : Source port / Destination port
■ --sport 22 --dport 80

○ -p [protocol] : tcp, udp, icmp, all
■ -p icmp

○ ! (not) : Invert matching
■ ! -s 140.113.1.0/24
■ ! -i eth0
■ ! -p udp
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iptables – Custom chain
● Create

○ -N my-chain
○ Define in restore file

● When iptables reaches the end of user-defined chain, flow returns 
to the next rule in the calling chain

● E.g.
○ -A INPUT -j badguy
○ -A INPUT -j ACCEPT
○ -A badguy -s 1.2.3.4 -j DROP
○ -A badguy -s 140.112.0.0/24 -j DROP
○ …
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Example: Hello world
● Allow outgoing packets but deny all incoming packets, except the 

packets that reply users requests
○ -A INPUT -i lo -j ACCEPT
○ -A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j 

ACCEPT
● State

○ NEW : New connection
○ ESTABLISHED : Old connection
○ RELATED : New connection create by ESTABLISHED session
○ INVALID
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Example: NAT
● Provides NAT from eth0 to eth1

○ sysctl -w net.ipv4.ip_forward=1
○ -t NAT -A POSTROUTING -i eth0 -o eth1 -j MASQUERADE

● NAT
○ SNAT --to-source : Change Source IP Address
○ DNAT --to-destination : Change Destination IP Address
○ MASQUERADE : Change Source IP Address (based on outgoing 

device IP Address)
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Example: Prevent DDoS Attack
● Append traffic limit (10 times / 60 sec) to SSH services

○ -A INPUT -p tcp --dport 22 -m state --state NEW -m recent --set --
name RECENT --rsource

○ -A INPUT -p tcp --dport 22 -m state --state NEW -m recent --rcheck
--seconds 60 --hitcount 10 --name RECENT --rsource -j DROP

● xt_recent
○ Record every connection
○ Filter connection by connecting history
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Other tools
● These tools help user to manage iptables rules

○ UFW (Uncomplicated Firewall) (Ubuntu)
■ Easy to use
■ Hard to customize

○ Firewalld (Redhat)
■ Another way to manage your firewall

● Sometime even with these tools, you still need to understand 
iptables, otherwise you cannot manage complicated firewall rules 
like docker network, kubernetes
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Packet Filter (PF)
● Functionality

○ Filtering packets
○ NAT
○ Load balance
○ QoS: (ALTQ: Alternate Queuing)
○ Failover (pfsync + carp)
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PF in FreeBSD – Enable pf*
● In /etc/rc.conf (kernel modules loaded automatically)

○ pf_enable="YES"
○ pflog_enable="YES"
○ pfsync_enable="YES"

● Kernel configurations
○ device      pf
○ device      pflog
○ device      pfsync
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PF in FreeBSD – Commands
● /etc/rc.d/pf

○ start / stop / restart / status / check / reload / resync
● pfctl

○ -e / -d
○ -F {nat | rules | state | info | Tables | all | …}
○ -v -s {nat | rules | state | info | all | Anchors | Tables | …}
○ -v -n -f /etc/pf.conf
○ -t <table> -T {add | delete| test} {ip …}
○ -t <table> -T {show | kill | flush | …}
○ -k {host | network} [-k {host | network}]
○ -a {anchor} …

■ Default anchor: -a '*'
■ E.g. -a 'ftp-proxy/*'
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PF in FreeBSD – Config ordering
● Macros

○ user-defined variables, so they can be referenced and changed easily.
● Tables "table"

○ similar to macros, but efficient and more flexible for many addresses.
● Options "set"

○ tune the behavior of pf, default values are given.
● Normalization "scrub"

○ reassemble fragments and resolve or reduce traffic ambiguities.
● Queueing "altq", "queue"

○ rule-based bandwidth control.
● Translation (NAT) "rdr", "nat", "binat"

○ specify how addresses are to be mapped or redirected to other addresses
○ First match rules

● Filtering "antispoof", "block", "pass"
○ rule-based blocking or passing packets
○ Last match rules
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PF in FreeBSD – Lists
● Lists

○ Allow the specification of multiple similar criteria within a rule
■ multiple protocols, port numbers, addresses, etc.

○ defined by specifying items within { } brackets.
○ E.g.

■ pass out on rl0 proto { tcp, udp } from { 192.168.0.1, 10.5.32.6 } to any
■ pass in on fxp0 proto tcp to port { 22 80 }

○ Pitfall
■ pass in on fxp0 from { 10.0.0.0/8, !10.1.2.3 }
■ You mean (It means)

1. pass in on fxp0 from 10.0.0.0/8
2. block in on fxp0 from 10.1.2.3
3. pass in on fxp0 from !10.1.2.3

■ Use table, instead.
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PF in FreeBSD – Macros
● Macros

○ user-defined variables that can hold IP addresses, port numbers, interface 
names, etc.

○ reduce the complexity of a pf ruleset and also make maintaining a ruleset 
much easier.

○ Naming: start with [a-zA-Z] and may contain [a-zA-Z0-9_]
○ E.g.

■ ext_if = "fxp0"
■ block in on $ext_if from any to any

○ Macro of macros
■ host1 = "192.168.1.1"
■ host2 = "192.168.1.2"
■ all_hosts = "{" $host1 $host2 "}"
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PF in FreeBSD – Tables (1)
● Tables

○ used to hold a group of IPv4 and/or IPv6 addresses
■ hostname, interface name, and keyword self

○ Lookups against a table are very fast and consume less memory and 
processor time than lists

○ Two attributes
■ persist: keep the table in memory even when no rules refer to it
■ const: cannot be changed once the table is created

○ E.g.
■ table <private> const { 10/8, 172.16/12, 192.168/16 }
■ table <badhosts> persist
■ block on fxp0 from { <private>, <badhosts> } to any
■ table <spam> persist file "/etc/spammers" file "/etc/openrelays”
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PF in FreeBSD – Tables (2)
● Tables – Address Matching

○ An address lookup against a table will return the most narrowly 
matching entry
■ E.g.

○ Result

table <goodguys> { 172.16.0.0/16, !172.16.1.0/24, 172.16.1.100 }
block in on dc0
pass  in on dc0 from <goodguys>

172.16.50.5       passed
172.16.1.25       blocked
172.16.1.100      passed
10.1.4.55         blocked
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PF in FreeBSD – Options
● Format

○ control pf's operation, and specified in pf.conf using “set”
■ Format: set option [sub-ops] value

● Options
○ loginterface – collect packets and gather byte count statistics
○ ruleset-optimization – ruleset optimizer

■ none, basic, profile
■ basic: remove dups, remove subs, combine into a table, re-order rules

○ block-policy – default behavior for blocked packets
■ drop, return

○ skip on {ifname} – interfaces for which packets should not be filtered.
■ E.g. set skip on lo0

○ timeout, limit, optimization, state-policy, hostid, require-order, fingerprints, debug



38

PF in FreeBSD – Normalization
● Traffic Normalization

○ IP fragment reassembly
■ scrub in all

○ Default behavior
■ Fragments are buffered until they form a complete packet, and 

only the completed packet is passed on to the filter.
■ Advantage: filter rules have to deal only with complete packets, 

and ignore fragments.
■ Disadvantage: caching fragments is the additional memory cost
■ The full reassembly method is the only method that currently 

works with NAT.
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PF in FreeBSD – Translation (1)
● Translation

○ Modify either the source or destination address of the packets
○ The translation engine

1. modifies the specified address and/or port in the packet
2. passes it to the packet filter for evaluation

○ Filter rules filter based on the translated address and port number
○ Packets passed directly if the pass modifier is given in the rule
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PF in FreeBSD – Translation (2)
● Various types of translation

○ binat – bidirectional mapping between an external IP netblock and an 
internal IP netblock
■ binat on $ext_if from 10.1.2.150 to any -> 140.113.235.123
■ binat on $ext_if from 192.168.1.0/28 to any -> 140.113.24.0/28

○ nat – IP addresses are to be changes as the packet traverses the given 
interface
■ no nat on $ext_if from 192.168.123.234 to any
■ nat pass on $ext_if from 192.168.123.0/24 to any -> 140.113.235.21

○ rdr – redirect packets to another destination and possibly different port
■ no rdr on $int_if proto tcp from any to $server port 80
■ rdr on $int_if proto tcp from any to any port 80 -> 127.0.0.1 port 80
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PF in FreeBSD – Translation (3)
● Evaluation

○ Evaluation order of translation rules depends on the type
■ binat rules first, and then either rdr rules for inbound packets or nat 

rules for outbound packets
○ Rules of the same type are evaluated in the order of appearing in the 

ruleset
○ The first matching rule decides what action is taken
○ If no rule matches the packet, it is passed to the filter unmodified
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PF in FreeBSD – Packet Filtering (1)
● pf has the ability to block and pass packets based on

○ layer 3(ip, ip6) and layer 4(icmp, icmp6, tcp, udp) headers
● Each packet processed by the filter

○ The filter rules are evaluated in sequential order
○ The last matching rule decides what action is taken
○ If no rule matches the packet, the default action is to pass

● Format
○ {pass | block [drop | return]}    [in | out]    [log]    [quick] [on ifname] … 

{hosts} …
○ The simplest to block everything by default: specify the first filter rule

■ block all
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PF in FreeBSD – Packet Filtering (2)
● States

○ If the packet is passed, state is created unless the no state is specified
■ The first time a packet matches pass, a state entry is created
■ For subsequent packets, the filter checks whether each matches any 

state
■ For TCP, also check its sequence numbers
■ pf knows how to match ICMP replies to states

● Port unreachable for UDP
● ICMP echo reply for echo request
● …

■ Stores in BST for efficiency
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PF in FreeBSD – Packet Filtering (3)
● Parameters

○ in | out – apply to incoming or outgoing packets
○ log - generate log messages to pflog (pflog0, /var/log/pflog)

■ Default: the packet that establishes the state is logged
○ quick – the rule is considered the last matching rule
○ on ifname – apply only on the particular interface
○ inet | inet6 – apply only on this address family
○ proto {tcp | udp | icmp | icmp6} – apply only on this protocol
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PF in FreeBSD – Packet Filtering (4)
● Parameters

○ hosts : { from host [ port [op] # ] to host [port [op] #] | all }
○ host: 

■ host can be specified in CIDR notation, hostnames, interface names, table, or 
keywords any, self, …

■ Hostnames are translated to address(es) at ruleset load time.
■ When the address of an interface or hostname changes, the ruleset must be reloaded
■ When interface name is surrounded by (), the rule is automatically updated 

whenever the interface changes its address
○ port:

■ ops: unary(=, !=, <, <=, >, >=), and binary(:, ><, <>)
○ E.g.

■ block in all
■ pass in proto tcp from any port < 1024 to self port 33333:44444
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PF in FreeBSD – Packet Filtering (5)
● Parameters

○ flags {<a>/<b> | any} – only apply to TCP packets
■ Flags: (F)IN, (S)YN, (R)ST, (P)USH, (A)CK, (U)RG, (E)CE, C(W)R
■ Check flags listed in <b>, and see if the flags (not) in <a> is (not) set
■ E.g.

● flags S/S : check SYN is set, ignore others.
● flags S/SA: check SYN is set and ACK is unset., ignore others

■ Default flags S/SA for TCP
○ icmp-type type code code
○ icmp6-type type code code

■ Apply to ICMP and ICMP6 packets
○ label – for per-rule statistics
○ {tag | tagged} string

■ tag by nat, rdr, or binat, and identify by filter rules.
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PF in FreeBSD – Load Balance
● Load balance

○ For nat and rdr rules
○ E.g.

■ rdr on $ext_if proto tcp from any to any port 80  -> 
{10.1.2.155, 10.1.2.160, 10.1.2.161} round-robin
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PF in FreeBSD – Security
● For security consideration

○ state modulation
■ Create a high quality random sequence number
■ Applying modulate state parameter to a TCP connection

○ syn proxy
■ pf itself completes the handshake
■ Applying synproxy state parameter to a TCP connection

● Include modulate state



49

PF in FreeBSD – Stateful tracking
● Stateful tracking options

○ keep state, modulate state, and synproxy state support these options
■ keep state must be specidied explicitly to apply options to a rule

● E.g.
○ table <bad_hosts> persist
○ block quick from <bad_hosts>
○ pass in on $ext_if proto tcp to ($ext_if) port ssh keep state 

( max-src-conn-rate 5/30, overload <bad_hosts> flush global)
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PF in FreeBSD – Blocking spoofed
● Blocking spoofed traffic

○ antispoof for ifname
○ antispoof for lo0

■ block drop in on ! lo0 inet from 127.0.0.1/8 to any
■ block drop in on ! lo0 inet6 from ::1 to any

○ antispoof for wi0 inet (IP: 10.0.0.1, netmask 255.255.255.0)
■ block drop in on ! wi0 inet from 10.0.0.0/24 to any
■ block drop in inet from 10.0.0.1 to any

○ Pitfall:
■ Rules created by the antispoof interfere with packets sent over loopback 

interfaces to local addresses. One should pass these explicitly.
■ set skip on lo0
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PF in FreeBSD – Anchors
● Besides the main ruleset, pf can load rulesets into anchor 

attachment points
○ An anchor is a container that can hold rules, address tables, and other 

anchors
○ The main ruleset is actually the default anchor
○ An anchor can reference another anchor attachment point using

■ nat-anchor 
■ rdr-anchor
■ binat-anchor
■ anchor
■ load anchor <name> from <file>
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PF in FreeBSD – Example
# macro definitions
extdev='fxp0'
server_ext='140.113.214.13'

# options
set limit { states 10000, frags 5000 }
set loginterface $extdev
set block-policy drop
set skip on lo0

# tables
table <badhosts> persist file "/etc/badhosts.list"

# filtering rules
block in  all
pass out all
antispoof for $extdev
block log in on $extdev proto tcp from any to any port {139, 445}
block log in on $extdev proto udp from any to any port {137, 138}
block on $extdev quick from <badhosts> to any
pass in on $extdev proto tcp from 140.113.0.0/16 to any port {139, 445}
pass in on $extdev proto udp from 140.113.0.0/16 to any port {137, 138}
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PF in FreeBSD – Debug by pflog
● Enable pflog in /etc/rc.conf (pflog.ko loaded automatically)

○ pflog_enable="YES"
■ Log to pflog0 interface
■ tcpdump -i pflog0

○ pflog_logfile="/var/log/pflog"
■ tcpdump -r /var/log/pflog

● Create firewall rules
○ Default configuration rules

■ pf_rules="/etc/pf.conf"
○ Sample files

■ /usr/share/examples/pf/*
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NAT on FreeBSD (1)
● Setup

○ Network topology
○ configuration
○ Advanced redirection
○ configuration

Web Server
192.168.1.1

FTP Server
192.168.1.2

PC1
192.168.1.101

Switch

NAT Server
Public: 140.113.235.4
Private: 192.168.1.254

Protected area

ipwf firewall

Switch Uplink to 
Internet

Other Public Service
Unprotected area

Private Network Hosts
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NAT on FreeBSD (2)
● In /etc/rc.conf

○ ifconfig_fxp0="inet 140.113.235.4"
○ ifconfig_fxp1="inet 192.168.1.254/24"
○ defaultrouter="140.113.235.254" 
○ gateway_enable="YES"

● In /etc/pf.conf
○ nat
○ rdr
○ binat

# macro definitions
extdev='fxp0'
intranet='192.168.1.0/24'
webserver='192.168.1.1'
ftpserver='192.168.1.2'
winxp='192.168.1.101'
server_int='192.168.1.88'
server_ext='140.113.235.13'

# nat rules
nat on $extdev inet from $intranet to any -> $extdev
rdr on $extdev inet proto tcp to port 80 -> $webserver port 80
rdr on $extdev inet proto tcp to port 443 -> $webserver port 443
rdr on $extdev inet proto tcp to port 21 -> $ftpserver port 21
rdr on $extdev inet proto tcp to port 3389 -> $winxp port 3389
binat on $extdev inet from $server_int to any -> $server_ext
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ALTQ: Alternate Queue – (1)
● Rebuild Kernel is needed

○ http://www.freebsd.org/doc/handbook/firewalls-pf.html
○ ALTQ related kernel options and supported devices

■ man 4 altq
# altq(9). Enable the base part of the hooks with the ALTQ option.
# Individual disciplines must be built into the base system and can not be
# loaded as modules at this point. In order to build a SMP kernel you must
# also have the ALTQ_NOPCC option.
options         ALTQ
options         ALTQ_CBQ        # Class Based Queueing
options         ALTQ_RED        # Random Early Drop
options         ALTQ_RIO        # RED In/Out
options         ALTQ_HFSC       # Hierarchical Packet Scheduler
options         ALTQ_CDNR       # Traffic conditioner
options         ALTQ_PRIQ       # Priority Queueing
options         ALTQ_NOPCC      # Required if the TSC is unusable
options         ALTQ_DEBUG

http://www.freebsd.org/doc/handbook/firewalls-pf.html
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ALTQ: Alternate Queue – (2)
● altq on dc0 cbq bandwidth 5Mb queue {std, http}
● queue std bandwidth 10% cbq(default)
● queue http bandwidth 60% priority 2 cbq(borrow) {employee,developer}
● queue developers bandwidth 75% cbq(borrow)
● queue employees bandwidth 15%
● block return out on dc0 inet all queue std
● pass out on dc0 inet proto tcp from $developerhosts to any port 80 queue 

developers
● pass out on dc0 inet proto tcp from $employeehosts to any port 80 queue 

employees
● pass out on dc0 inet proto tcp from any to any port 22
● pass out on dc0 inet proto tcp from any to any port 25
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