
國立陽明交通大學資工系資訊中心
Computer Center of Department of Computer Science, NYCU

WireGuard

1

2

WireGuard Introduction
● Simple and fast VPN solution

○ Low overhead
○ Deep integration with Linux kernel
○ Over UDP

● Peer to Peer
● Secure
● Built-in Roaming

○ Connections keep alive even if the underlay network change

3

TUN/TAP
● TAP

○ Layer 2
○ More overhead(L2)
○ Transfer any protocol
○ Support L2+ services

● TUN
○ Layer 3
○ Less Overhead(L3)
○ Only IPv4 , IPv6
○ Support L3+ services

4

Installation
● https://www.wireguard.com/install/
● Linux kernel >= 3.10
● CentOS

○ $ sudo curl -Lo /etc/yum.repos.d/wireguard.repo
https://copr.fedorainfracloud.org/coprs/jdoss/wireguard/repo/epel-
7/jdoss-wireguard-epel-7.repo

○ $ sudo yum install epel-release
○ $ sudo yum install wireguard-dkms wireguard-tools

● FreeBSD
○ In kernel implementation for FreeBSD 13 (faster!)
○ $ pkg install wireguard

https://www.wireguard.com/install/

5

Tools
● Provided by WireGuard

○ wg
■ Set and retrieve configuration of WireGuard interface

○ wg-quick
■ Set up a WireGuard interface simply

● System tools
○ ip / ifconfig

■ Setup wg interfaces
○ Systemd

■ Auto start after boot

6

Setup by hand (Linux)
● Add interface

○ $ ip link add dev wg0 type wireguard
● Setup ip

○ $ ip address add dev wg0 192.168.2.1/24
○ $ ip address add dev wg0 192.168.2.1 peer 192.168.2.2

● Setup wg configurations
○ $ wg setconf wg0 myconfig.conf
○ $ wg set wg0 listen-port 51820 private-key /path/to/private-key peer

ABCDEF... allowed-ips 192.168.88.0/24 endpoint 209.202.254.14:8172
● Start interface

○ $ ip link set up dev wg0

7

Setup by configuration
● Configuration file

○ /etc/wireguard/wg0.conf
● Start interface

○ $ systemctl enable wg-quick@wg0
○ $ wg-quick up wg0

8

Example Configurations – Client

[Interface]
Address = 10.113.0.4/16
PrivateKey = [CLIENT PRIVATE KEY]

[Peer]
PublicKey = [SERVER PUBLICKEY]
AllowedIPs = 10.113.0.0/16, 10.123.45.0/24, 1234:4567:89ab::/48
Endpoint = [SERVER ENDPOINT]:51820
PersistentKeepalive = 25

9

Example Configurations – Server
[Interface]
Address = 10.113.0.254/16
ListenPort = 51820
PrivateKey = [SERVER PRIVATE KEY]

note - substitute eth0 in the following lines to match the Internet-facing interface
PostUp = iptables -A FORWARD -i %i -j ACCEPT; iptables -t nat -A POSTROUTING -o eth0 -
j MASQUERADE
PostDown = iptables -D FORWARD -i %i -j ACCEPT; iptables -t nat -D POSTROUTING -o eth0
-j MASQUERADE

[Peer]
client foo
PublicKey = [FOO's PUBLIC KEY]
PresharedKey = [PRE-SHARED KEY]
AllowedIPs = 10.113.0.1/32, 10.113.1.0/24

[Peer]
client bar
PublicKey = [BAR's PUBLIC KEY]
AllowedIPs = 10.113.0.2/32, 10.113.2.0/24

10

Configuration – Interface
● Address (optional)

○ IP address and netmask of the interface
● ListenPort

○ Wg service listen port
● PrivateKey

○ Private key of the interface
● PreUp / PreDown / PostUp / PostDown

○ Run shell scripts before / after interface up / down
○ E.g.

■ Setup firewall rules

11

Configuration – Peer
● PublicKey

○ Public key of the peer
● AllowedIPs

○ IP addresses that are allowed to pass through this peer
● Endpoint (Optional)

○ Location of the peer
○ Wg will also use the previous connections to detect this configuration

● PersistentKeepalive (Optional)
○ By default, Wg send packs only if there are data to be send
○ Send packs to peer periodically to bypass NAT or Firewall

● PresharedKey (Optional)
○ Pre-shared key for additional symmetric encryption

12

Generate Key Pair
● Key pair

○ $ wg genkey > privatekey
○ $ wg pubkey < privatekey > publickey

● Pre-shared key
○ $ wg genpsk > preshared

13

Cryptokey Routing
● WireGuard will add routing rules to system routing table according

to the configurations
● Once packets go inside WireGuard, it is routed according to

Cryptokey Routing
○ When sending packets, the list of allowed IPs behaves as a sort of

routing table
○ When receiving packets, the list of allowed IPs behaves as a sort of

access control list

14

Built-in Roaming
● When the client connects to server, server record the IP of client,

and communicate with client by this IP
● When client (or even server) change its IP, it sends data to the peer

and the peer will update the IP
● Both client and server send encrypted data to the most recent IP

endpoint for which they authentically decrypted data. Thus, there is
full IP roaming on both ends

15

Example – Build a Bridge VPN Server
● Follow the setup guide and build a Wg peer as a VPN server
● Enable ip forwarding

○ sysctl net.ipv4.ip_forward=1
● Setup NAT so clients can connect to internet through the VPN

server
○ Add these lines to wg0.conf

■ PostUp = iptables -A FORWARD -i %i -j ACCEPT; iptables -t nat -A
POSTROUTING -o eth0 -j MASQUERADE

■ PostDown = iptables -D FORWARD -i %i -j ACCEPT; iptables -t nat -
D POSTROUTING -o eth0 -j MASQUERADE

16

Connect from mobile
● For mobile app, user can use QR-Code to import configuration file,

instead of copy-paste private key from other ways
○ $ qrencode -t ansiutf8 < wgconfig.conf

17

User authentication
● Every peer has its own private key for identity authentication
● Integration with other authentication system (like LDAP) may need

other software support
○ For now, WireGuard only provide simple tunnel connections

between peers

18

Reference
● https://www.wireguard.com/
● https://www.wireguard.com/quickstart/
● https://wiki.archlinux.org/index.php/WireGuard

https://www.wireguard.com/
https://www.wireguard.com/quickstart/
https://wiki.archlinux.org/index.php/WireGuard

	WireGuard
	WireGuard Introduction
	TUN/TAP
	Installation
	Tools
	Setup by hand (Linux)
	Setup by configuration
	Example Configurations – Client
	Example Configurations – Server
	Configuration – Interface
	Configuration – Peer
	Generate Key Pair
	Cryptokey Routing
	Built-in Roaming
	Example – Build a Bridge VPN Server
	Connect from mobile
	User authentication
	Reference

