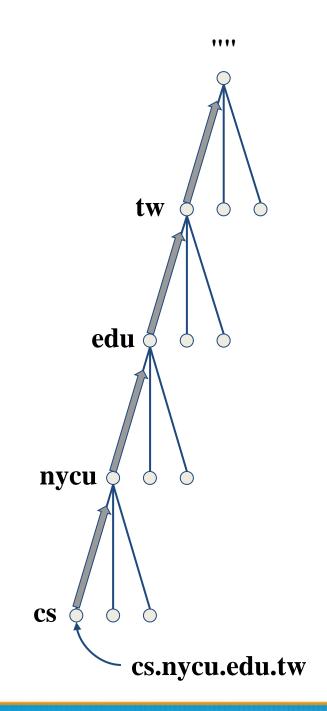
The Domain Name System

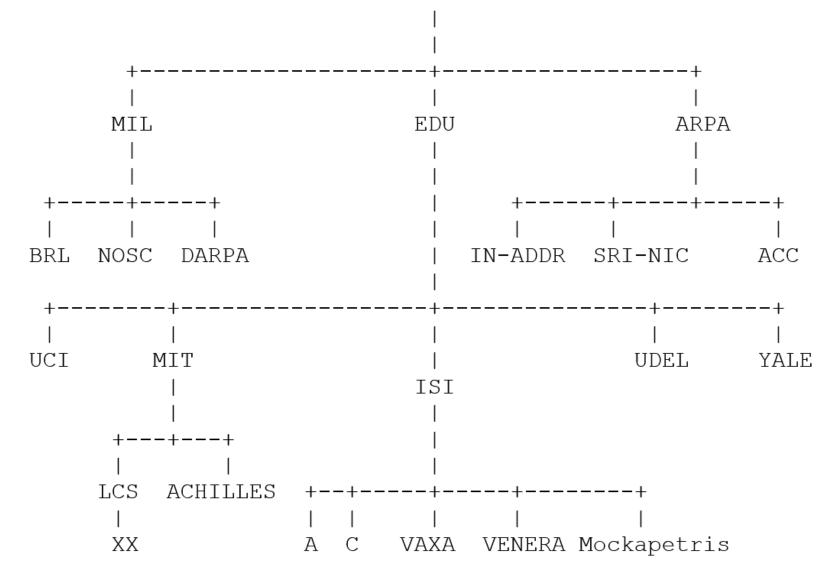
tsaimh (2024, CC-BY) lwhsu (2020-2023, CC-BY) ? (?-2019) 國立陽明交通大學資工系資訊中心

History of DNS

- What and Why is DNS?
 - IP is difficult to memorize, and IPv6 makes it worse
 - \circ Domain Name \leftrightarrow IP Address(es)
- Before DNS
 - ARPANET
 - HOSTS.txt contains all the hosts' information (/etc/hosts)
 - Maintained by SRI's Network Information Center
 - Register \rightarrow Distribute DB
 - Problems: Not scalable!
 - Traffic and Load
 - Name Collision
 - Consistency
- Domain Name System
 - Administration decentralization
 - Paul Mockapetris (University of Southern California)
 - RFC 882, 883 (1983) → 1034, 1035 (1987)


Paul Mockapetris (1948-) Inventor of DNS Internet Hall of Fame 2012 ACM Fellow

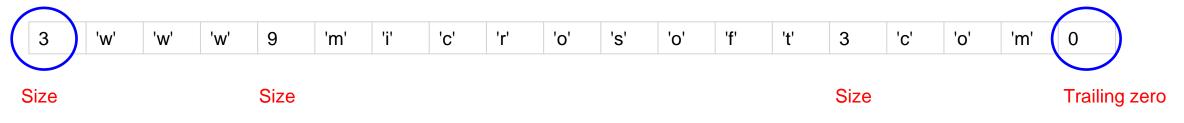
DNS Specification


- Tree architecture "domain" and "subdomain"
 - Divided into categories
 - Solves name collision
- Distributed database
 - $\circ~$ Each site maintains a segment of the DB
 - $\circ~$ Each site opens its information via network
- Client-Server architecture
 - Name servers provide information (Name Server)
 - Clients make queries to server (Resolver)

The DNS Namespace – (1)

- Domain name is
 - An inverted tree (Rooted tree)
 - Root with label '.'
 - Root with label " (Null)
- Domain and subdomain
 - Each domain has a "domain name" to identify its position in database
 - domain: nycu.edu.tw
 - subdomain: cs.nycu.edu.tw

The DNS Namespace – (2)


https://tools.ietf.org/html/rfc1034#section-3.4

The DNS Namespace – (3)

- Domain name limitations (RFC1035: 2.3.4 "Size limits")
 - Up to 63-octets in each label
 - Up to 255-octets in a full domain name
 - Up to 253 visible characters
 - What is the real maximum length of a DNS name?
 - https://devblogs.microsoft.com/oldnewthing/20120412-00/?p=7873

(63 letters).(63 letters).(62 letters) ----- Size limit exceeded!!

For example, www.microsoft.com is encoded as follows:

Root Zone and Special Top Level Domains (TLDs) Maintained by IANA

- DNS Root Zone is the upper-most part of the DNS hierarchy, and involves delegating administrative responsibility of "top-level domains".
- The .int top-level domain, designed for the sole use of cross-national organizations, such as treaty organizations (e.g., NATO and WHO)
- The .arpa domain (Address and Routing Parameter Area) is used internally by Internet protocols, such as for reverse mapping of IP addresses, and delivery of ENUM phone number mapping.

Top Level Domains (TLDs)

- As of 2015, IANA distinguishes the following groups of top-level domains:
 - Infrastructure top-level domain (ARPA): It is managed by IANA on behalf of the IETF for various purposes specified in the RFCs.
 - Generic top-level domains (gTLD): Top-level domains with three or more characters
 - Generic restricted top-level domains (grTLD): These domains are managed under official ICANN accredited registrars. (.biz .name .pro)
 - Sponsored top-level domains (sTLD): These domains are proposed and sponsored by private agencies or organizations, and are managed under official ICANN accredited registrars.

Top Level Domains (TLDs) (cont.)

- country-code top-level domains (ccTLD): Two-letter domains established for countries or territories. With some historical exceptions, the code for any territory is the same as its two-letter ISO 3166 code.
- Test top-level domains (tTLD): These domains were installed under .test for testing purposes in the IDN development process; these domains are not present in the root zone.
- The following TLDs are reserved by RFCs:
 - .example .invalid .localhost .test (RFC 6761)
 - .local (RFC 6762)
 - .onion (RFC 7686)

Generic TLD (gTLD)

- RFC 920 (1984) defines the first six generic TLDs
 - com: commercial organization, such as <u>ibm.com</u>
 - edu: educational organization, such as <u>purdue.edu</u>
 - gov: government organization, such as <u>nasa.gov</u>
 - mil: military organization, such as <u>navy.mil</u>
 - net: network infrastructure providing organization, such as <u>hinet.net</u>
 - org: noncommercial organization, such as <u>x.org</u>
- In 1988, NATO requests for the TLD .int
 - int: International organization, such as <u>nato.int</u>

Now Sponsored TLD

Generic TLD (gTLD) (cont.)

- New gTLDs launched in year 2000:
 - \circ aero: for air-transport industry
 - biz: for business
 - \circ coop: for cooperatives
 - \circ info: for all uses
 - museum: for museum
 - name: for individuals
 - pro: for professionals

Now generic restricted TLD

Now Sponsored TLD

https://www.iana.org/domains/root/db

Sponsored TLD (sTLD)

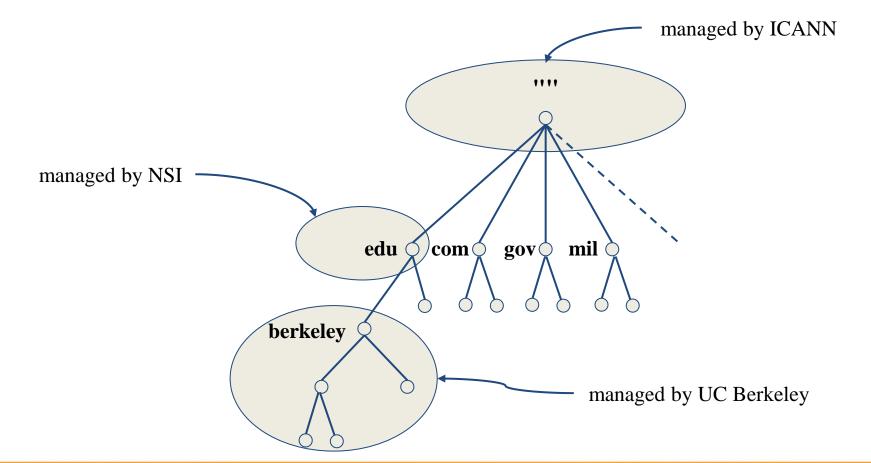
• A sponsored TLD is a specialized top-level domain that has a sponsor representing a specific community served by the domain.

TLD	Eligibility	Sponsors		
<u>.jobs</u>	Human resource managers	The Society for Human Resource Management (nonprofit organization)		
<u>.post</u>	Postal services	Universal Postal Union		
<u>.tel</u>	For businesses and individuals to publish contact data	Since 2008: <u>Telnic Limited</u> Since 2017: <u>Telnames Limited</u> (private company)		
<u>.travel</u>	Travel agents, airlines, hoteliers, tourism bureaus, etc.	Since 2020: Registry is <u>Donuts</u> Inc. ^[10] (private company)		
<u>.XXX</u>	Pornographic sites	ICM Registry		

Country-code TLD (ccTLD)

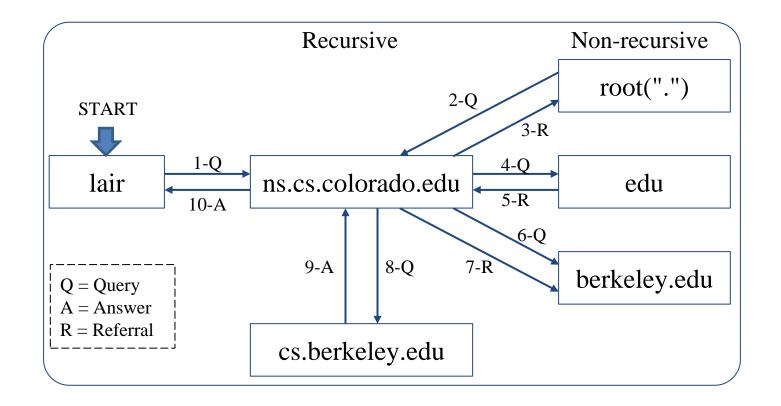
- Country code extension applications began in 1985. The registered country code extensions in that year included .us (United States), .uk (United Kingdom) and .il (Israel).
- Creation and delegation of ccTLDs is described in RFC 1591, corresponding to ISO 3166-1 alpha-2 country codes (i.e., all identifiers are two letters long).

English short name 🔶	French short name	Alpha-2 code	Alpha-3 code	Numeric
China	Chine (la)	CN	CHN	156
Taiwan (Province of China)	Taïwan (Province de Chine)	TW	TWN	158

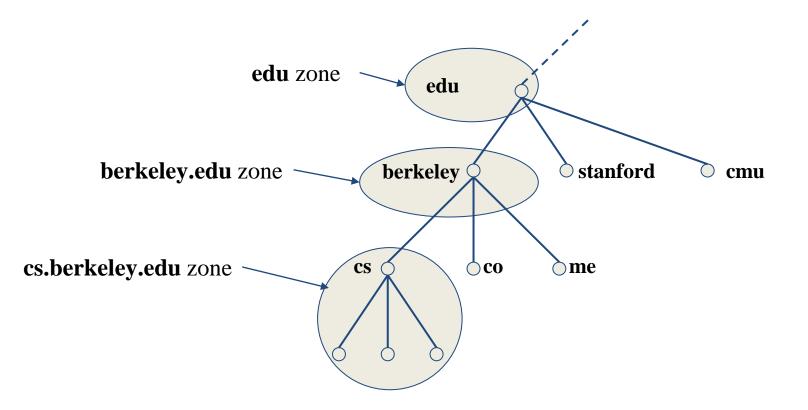

Source: https://www.iso.org/obp/ui/#search

Country-code TLD (ccTLD)

- ISO 3166, but just based on
 - Taiwan => tw (registered by MoE in July, 1989)
 - United Kingdom => uk (ISO3166 is GB)
 - European Union => eu
 - Follow or not follow US-like scheme
 - US-like scheme example
 - edu.tw, com.tw, gov.tw
 - Other scheme
 - ac.jp, co.jp


How DNS Works – DNS Delegation

- Administration delegation
 - Each domain can delegate responsibility to subdomain
 - Specify name servers of subdomain


How DNS Works – DNS query process

- Recursive query process
 - Ex: query <u>lair.cs.colorado.edu</u> => <u>vangogh.cs.berkeley.edu</u>, name server "ns.cs.colorado.edu" has no cache data

DNS Delegation – Administered Zone

- Zone
 - Autonomously administered piece of namespace
 - Once the subdomain becomes a zone, it is independent to its parent
 - Even parent contains NS's A record

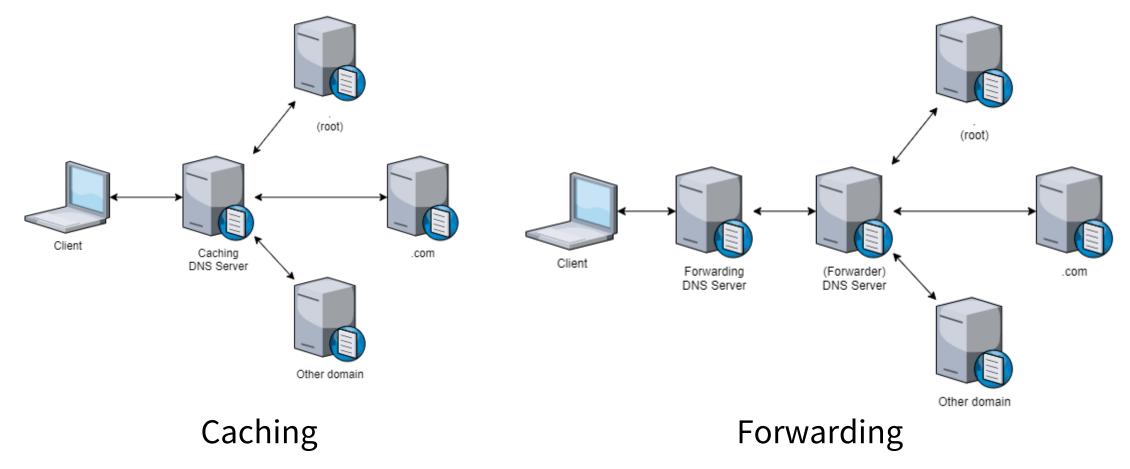
DNS Delegation – Administered Zone

- Two kinds of zone files
 - Forward Zone files
 - Hostname-to-Address mapping
 - Ex:
 - <u>bsd1.cs.nctu.edu.tw.</u> IN A 140.113.235.131
 - Reverse Zone files
 - Address-to-Hostname mapping
 - Ex:
 - <u>131.235.113.140.in-addr.arpa</u>. IN PTR bsd1.cs.nctu.edu.tw.

The Name Server Taxonomy (1)

- Categories of name servers
 - $\circ~$ Based on the source of name server's data
 - Authoritative: official representative of a zone (master/slave)
 - Master: get zone data from disk
 - Slave: copy zone data from master
 - Nonauthoritative: answer a query from cache
 - caching: caches data from previous queries
 - \circ Based on the type of answers handed out
 - Recursive: do query for you until it return an answer or error
 - **Nonrecursive**: refer you to the authoritative server
 - \circ Based on the query path
 - Forwarder: performs queries on behalf of many clients with large cache
 - Caching: performs queries as a recursive name server

The Name Server Taxonomy (2)

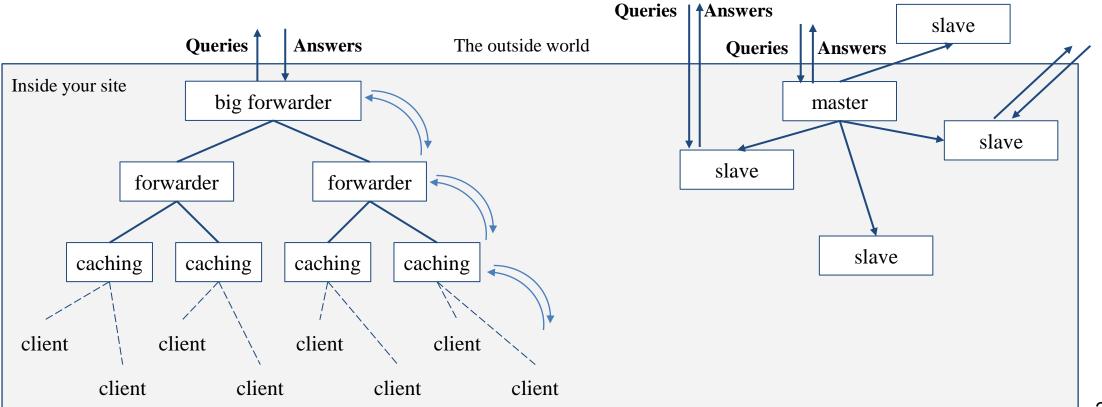

- Non-recursive referral
 - Hierarchical and longest known domain referral with cache data of other zone's name servers' addresses
 - Ex:
 - Query lair.cs.colorado.edu from a nonrecursive server
 - Whether cache has
 - IP of lair.cs.colorado.edu
 - Name servers of cs.colorado.edu
 - Name servers of colorado.edu
 - Name servers of edu
 - Name servers of root ("")
 - The resolver libraries do not understand referrals mostly. They expect the local name server to be recursive

The Name Server Taxonomy (3)

- Caching
 - Positive cache (Long TTL)
 - Negative cache (Short TTL)
 - No host or domain matches the name queried
 - The type of data requested does not exist for this host
 - The server to ask is not responding
 - The server is unreachable of network problem
- Negative cache
 - $\circ~60\%$ DNS queries are failed
 - To reduce the load of root servers, the authoritative negative answers must be cached

The Name Server Taxonomy (4)

• Caching and forwarding DNS servers



The Name Server Taxonomy (5)

- How to arrange your DNS servers?
 - \circ Ex:

Queries from inside

Queries from outside

The Name Server Taxonomy (6)

- Root name servers
 - In named.root file of BIND
 - <u>https://www.iana.org/domains/root/files</u>

	3600000	IN	NS	A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET.	3600000		A	198.41.0.4
A.ROOT-SERVERS.NET.	3600000		AAAA	2001:503:ba3e::2:30
	3600000		NS	B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET.	3600000		A	199.9.14.201
B.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:200::b
	3600000		NS	C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET.	3600000		A	192.33.4.12
C.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:2::c
	3600000		NS	D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET.	3600000		А	199.7.91.13
D.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:2d::d
	3600000		NS	E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET.	3600000		А	192.203.230.10
E.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:a8::e
	3600000		NS	F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET.	3600000		А	192.5.5.241
F.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:2f::f
	3600000		NS	G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET.	3600000		A	192.112.36.4
G.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:12::d0d
	3600000		NS	H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET.	3600000		A	198.97.190.53
H.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:1::53

DNS Client Configurations

- /etc/resolv.conf
 - nameserver
 - domain
 - \circ search
 - o resolver(5), resolverconf(8)
- /etc/hosts
 - Format: IP FQDN Aliases
 - O C:\Windows\system32\drivers\etc\hosts
 - \circ hosts(5)
- /etc/nsswitch.conf
 - o hosts: files (nis) (ldap) dns
 - \circ nsswitch.conf(5)

DNS Client Commands – host

- \$ host nasa.cs.nctu.edu.tw
 nasa.cs.nctu.edu.tw has address 140.113.17.32
- \$ host 140.113.17.32
 32.17.113.140.in-addr.arpa domain name pointer nasa.cs.nctu.edu.tw.

DNS Client Commands – nslookup

- \$ nslookup nasa.cs.nctu.edu.tw
 Server: 140.113.235.1
 Address: 140.113.235.1#53
 Name: nasa.cs.nctu.edu.tw
 Address: 140.113.17.32
- \$ nslookup 140.113.17.225
 Server: 140.113.235.1
 Address: 140.113.235.1#53
 32.17.113.140.in-addr.arpa name = nasa.cs.nctu.edu.tw.

DNS Client Commands – dig (1)

• \$ dig nasa.cs.nctu.edu.tw

;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 47883 ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3							
;; QUESTION SECTION:							
;nasa.cs.nctu.edu.tw.	IN	A					
;; ANSWER SECTION: nasa.cs.nctu.edu.tw. 360	00 IN	A	140.113.17.32				
•••••							

DNS Client Commands – dig (2)

• \$ dig -x 140.113.17.32

;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5514 ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3 ;; QUESTION SECTION: ;32.17.113.140.in-addr.arpa. IN PTR ;; ANSWER SECTION: 32.17.113.140.in-addr.arpa. 86400 IN PTR nasa.cs.nctu.edu.tw.

DNS Client Commands – drill

- Drop-in replacement of dig in unbound
- \$ drill -D www.cs.nctu.edu.tw

.....

;; ->>HEADER<<- opcode: QUERY, rcode: NOERROR, id: 36215 ;; flags: qr rd ra ad ; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0 ;; QUESTION SECTION: ;; www.cs.nctu.edu.tw. IN A ;; ANSWER SECTION: www.cs.nctu.edu.tw. 60 IN A 140.113.235.48 www.cs.nctu.edu.tw. 60 IN RRSIG A 7 5 60 20220403192028 20220304183459 36008 cs.nctu.edu.tw. vX731iLKKL5rhUhF2hre21laNy/6bQxst2k75o218h59j8xJ3kM9UqNm385tyTe2Rb223ScsR SAOws4EMCs/CyVzFTfXe28wrA4jxVUCENpUByq7AInr3hrtUFdFdLRPwA16Vkzj950Yf+DtkC rZzORGf12FxU48wsmYTAJswnM=

DNS Security

- DNSSEC
 - Provide
 - Origin authentication of DNS data
 - Data integrity
 - Authenticated denial of existence
 - Not provide
 - Confidentiality
 - Availability

0 \$ dig +dnssec bsd1.cs.nctu.edu.tw

;; ANSWER SECTION:				
bsdl.cs.nctu.edu.tw.	3600	IN	A	140.113.235.131
bsdl.cs.nctu.edu.tw.	3600	IN	RRSIG	A 7 5 3600

RRSIG: Resource Record Signature

DNS Security (c.)

- DNS over TLS (DoT)
- DNS over HTTPS (DoH)
- DNS Amplification Attack
 - <u>http://www.cc.ntu.edu.tw/chinese/epaper/0028/20140320_2808.html</u>

DNS Server Software

- BIND <u>https://www.isc.org/bind/</u>
 - Complete DNS Server solution
- NSD <u>https://www.nlnetlabs.nl/projects/nsd/about/</u>
 - Authoritative DNS Server
 - No recursion, No caching
 - DNSSEC
- Unbound https://www.nlnetlabs.nl/projects/unbound/about/
 - Local resolver
 - Validating, Recursive, Caching
 - DoH, DoT
- https://en.wikipedia.org/wiki/Comparison_of_DNS_server_software

Misc.

- Internationalized Domain Name (IDN)
 - Punycode
 - A representation of Unicode with ASCII
 - .台灣 <-> .xn--kpry57d
 - https://en.wikipedia.org/wiki/Punycode
- Public & cloud services
 - Hurricane Electric Free DNS Hosting
 - https://dns.he.net/
 - AWS Route53
 - https://aws.amazon.com/route53/
- GeoDNS
 - Different DNS answers based on client's geographical location

Misc. (c.)

- DNS for fun
 - https://www.dns.toys/
- DNS Key Value Storage
 - https://dnskv.com/
- Tunnel
 - net/iodine
- Config
- FOSDEM 2023: Bizarre and Unusual Uses of DNS
 - Rule 53: If you can think of it, someone's done it in the DNS
 - https://fosdem.org/2023/schedule/event/dns_bizarre_and_unusual_uses_of __dns/

References

- What are root name servers?
 - <u>https://www.netnod.se/i-root/what-are-root-name-servers</u>
- Ukraine asked the internet's governing body to remove Russian sites
 - <u>https://www.cnbc.com/2022/03/01/ukraine-asked-icann-to-revoke-russian-domains-shut-dns-servers.html</u>
- ICANN asked to suspend .ru and .su domains
 - <u>https://brandsec.com.au/icann-to-consider-suspending-ru-and-su-domains/</u>
- 紮根過去放眼未來 網域名稱的歷史脈絡
 - <u>https://nccnews.com.tw/202103/ch3a.html</u>