
Firewalls

C
o

m
puter C

enter, C
S, N

C
TU

2

Firewalls

❑ Firewall
• A piece of hardware and/or software which functions in a networked

environment to prevent some communications forbidden by the security
policy.

• Choke point between secured and unsecured network
• Filter incoming and outgoing traffic that flows through your system

❑ What it can be used to do
• To protect and insulate the applications, services and machines of your

internal network from unwanted traffic coming in from the public Internet
➢ Such as telnet, NetBIOS

• To limit or disable access from hosts of the internal network to services of
the public Internet
➢ Such as MSN, ssh, ftp

• To support NAT (Network Address Translation)

C
o

m
puter C

enter, C
S, N

C
TU

3

Firewalls – Layers of Firewalls

❑ Network Layer Firewalls
• Operate at a low level of TCP/IP stack as IP-packet filters.
• Filter attributes
➢ Source/destination IP
➢ Source/destination port
➢ TTL
➢ Protocols
➢ …

❑ Application Layer Firewalls
• Work on the application level of the TCP/IP stack.
• Inspect all packets for improper content, a complex work!

❑ Application Firewalls
• The access control implemented by applications.

C
o

m
puter C

enter, C
S, N

C
TU

4

Firewall Rules

❑ Two ways to create firewall rulesets
• Exclusive
➢ Allow all traffic through except for the traffic matching the rulesets

• Inclusive
➢ Allow traffic matching the rulesets and blocks everything else
➢ Offer much better control of the outgoing traffic
➢ Control the type of traffic originating from the public Internet that can

gain access to your private network
➢ Safer than exclusive one

– reduce the risk of allowing unwanted traffic to pass
– Increase the risk to block yourself with wrong configuration

❑ Stateful firewall
• Keep track of which connections are opened through the firewall
• Be vulnerable to Denial of Service (DoS) attacks

C
o

m
puter C

enter, C
S, N

C
TU

5

Firewall Packages

❑ FreeBSD
• IPFILTER (known as IPF)
• IPFIREWALL (known as IPFW) + Dummynet
• Packet Filter (known as PF)+ ALTQ

❑ Solaris
• IPF

❑ Linux
• ipchains
• iptables

C
o

m
puter C

enter, C
S, N

C
TU

6

Packet Filter (PF)

❑ Introduction
• Packet filtering
• Translation (NAT)
• Alternate Queuing (ALTQ) for QoS , bandwidth limit
• Load balance
• Failover (pfsync + carp)
• Firewall migrated from OpenBSD
➢ http://www.openbsd.org/faq/pf/

Gateway
LAN

ADSL 1

ADSL 2

ADSL 3
Round-robin

http://www.openbsd.org/faq/pf/
http://www.openbsd.org/faq/pf/

C
o

m
puter C

enter, C
S, N

C
TU

7

PF in FreeBSD (1) – enabling pf

❑ Enable pf in /etc/rc.conf (pf.ko loaded automatically)
pf_enable="YES"

❑ Rebuild Kernel (if pfsync, ALTQ is needed)
device pf # Enable “Packet Filter” firewall
device pflog # pseudo device to log traffic
device pfsync # pseudo device to monitor “state changes”
options ALTQ
options ALTQ_CBQ # Class based queueing
options ALTQ_PRIQ # Priority queueing
options ALTQ_{RED | RIO}# Avoid network congestion
options ALTQ_HFSC # Hierarchical Fair Service Curve

Ref: http://www-2.cs.cmu.edu/~hzhang/HFSC/main.html

http://www-2.cs.cmu.edu/~hzhang/HFSC/main.html
http://www-2.cs.cmu.edu/~hzhang/HFSC/main.html

C
o

m
puter C

enter, C
S, N

C
TU

8

PF in FreeBSD (2) – enabling pflog

❑ Enable pflog in /etc/rc.conf (pflog.ko loaded automatically)
• pflog_enable="YES“
➢ Log to pflog0 interface
➢ tcpdump –i pflog0

• pflog_logfile="/var/log/pflog“
➢ tcpdump -r /var/log/pflog

❑ Create firewall rules
• Default configuration rules
➢ pf_rules="/etc/pf.conf"

• Sample files
➢ /usr/share/examples/pf/*

C
o

m
puter C

enter, C
S, N

C
TU

9

PF in FreeBSD (3) – related commands

❑ PF rc script: /etc/rc.d/pf
• start / stop / restart / status / check / reload

❑ PF command: pfctl
• -e / -d
• -F {nat | rulse | state | info | Tables | all | …}
• -v -s {nat | rules | state | info | all | Anchors | Tables | …}
• -v -n -f /etc/pf.conf
• {-f | -A | -O | -N | -R} /etc/pf.conf
• -t <table> -T {add | delete| test} {ip …}
• -t <table> -T {show | kill | flush | …}
• -k {host | network} [-k {host | network}]
• -a {anchor} …
➢ Ex. -a ‘*’ , -a ‘ftp-proxy/*’

C
o

m
puter C

enter, C
S, N

C
TU

10

PF in FreeBSD (4) – config ordering

❑ Macros
• user-defined variables, so they can be referenced and changed easily.

❑ Tables “table”
• similar to macros, but efficient and more flexible for many addresses.

❑ Options “set”
• tune the behavior of pf, default values are given.

❑ Normalization“scrub”
• reassemble fragments and resolve or reduce traffic ambiguities.

❑ Queueing “altq”, “queue”
• rule-based bandwidth control.

❑ Translation (NAT) “rdr”, “nat”, “binat”
• specify how addresses are to be mapped or redirected to other addresses
• First match rules

❑ Filtering “antispoof”, “block”, “pass”
• rule-based blocking or passing packets
• Last match rules

C
o

m
puter C

enter, C
S, N

C
TU

11

PF in FreeBSD (5) – Lists

❑ Lists
• Allow the specification of multiple similar criteria within a rule
➢ multiple protocols, port numbers, addresses, etc.

• defined by specifying items within { } brackets.
• eg.
➢ pass out on rl0 proto { tcp, udp } from { 192.168.0.1, 10.5.32.6 } to any
➢ pass in on fxp0 proto tcp to port { 22 80 }

• Pitfall
➢ pass in on fxp0 from { 10.0.0.0/8, !10.1.2.3 }
➢ You mean (It means)

1. pass in on fxp0 from 10.0.0.0/8
2. block in on fxp0 from 10.1.2.3
2. pass in on fxp0 from !10.1.2.3

➢ Use table, instead.

C
o

m
puter C

enter, C
S, N

C
TU

12

PF in FreeBSD (6) – Macros

❑ Macros
• user-defined variables that can hold IP addresses, port numbers,

interface names, etc.
• reduce the complexity of a pf ruleset and also make maintaining a

ruleset much easier.
• Naming: start with [a-zA-Z] and may contain [a-zA-Z0-9_]
• eg.
➢ ext_if = "fxp0“
➢ block in on $ext_if from any to any

• Macro of macros
➢ host1 = "192.168.1.1“
➢ host2 = "192.168.1.2“
➢ all_hosts = "{" $host1 $host2 "}"

C
o

m
puter C

enter, C
S, N

C
TU

13

PF in FreeBSD (7) – Tables

❑ Tables
• used to hold a group of IPv4 and/or IPv6 addresses
➢ hostname, inteface name, and keyword self

• Lookups against a table are very fast and consume less memory and
processor time than lists

• Two attributes
➢ persist: keep the table in memory even when no rules refer to it
➢ const: cannot be changed once the table is created

• eg.
➢ table <private> const { 10/8, 172.16/12, 192.168/16 }
➢ table <badhosts> persist
➢ block on fxp0 from { <private>, <badhosts> } to any
➢ table <spam> persist file "/etc/spammers" file "/etc/openrelays"

C
o

m
puter C

enter, C
S, N

C
TU

14

PF in FreeBSD (8) – Tables

❑ Tables – Address Matching
• An address lookup against a table will return the most narrowly

matching entry
• eg.
➢ table <goodguys> { 172.16.0.0/16, !172.16.1.0/24, 172.16.1.100 }
➢ block in on dc0
➢ pass in on dc0 from <goodguys>

• Result
➢ 172.16.50.5 passed
➢ 172.16.1.25 blocked
➢ 172.16.1.100 passed
➢ 10.1.4.55 blocked

C
o

m
puter C

enter, C
S, N

C
TU

15

PF in FreeBSD (9) – Options

❑ Format
• control pf's operation, and specified in pf.conf using “set”
➢ Format: set option [sub-ops] value

❑ Options
• loginterface – collect packets and gather byte count statistics
• ruleset-optimization – ruleset optimizer
➢ none, basic, profile
➢ basic: remove dups, remove subs, combine into a table, re-order rules

• block-policy – default behavior for blocked packets
➢ drop, return

• skip on {ifname} – interfaces for which packets should not be filtered.
➢ eg. set skip on lo0

• timeout, limit, optimization, state-policy, hostid, require-order,
fingerprints, debug

C
o

m
puter C

enter, C
S, N

C
TU

16

PF in FreeBSD (10) – Normalization

❑ Traffic Normalization
• IP fragment reassembly
➢ scrub in all

• Default behavior
➢ Fragments are buffered until they form a complete packet, and only the

completed packet is passed on to the filter.
➢ Advantage: filter rules have to deal only with complete packets, and

ignore fragments.
➢ Disadvantage: caching fragments is the additional memory cost
➢ The full reassembly method is the only method that currently works

with NAT.

C
o

m
puter C

enter, C
S, N

C
TU

17

PF in FreeBSD (11) – Queueing

❑ ALTQ

altq on interface type [options ...] main_queue { sub_q1, sub_q2 ..}
queue sub_q1 [options ...]
queue sub_q2 [options ...] { subA, subB, ... }
[...]

pass [...] queue sub_q1
pass [...] queue sub_q2

C
o

m
puter C

enter, C
S, N

C
TU

18

PF in FreeBSD (11) – Queueing

❑ Queue scheduler (a.k.a. Queue disciplines)
• Default: FIFO (without ALTQ)
• priq - Priority-based Queueing
• cbq - Class-based Queueing
• hfsc - Hierarchical Fair Service Curve

C
o

m
puter C

enter, C
S, N

C
TU

19

PF in FreeBSD (11) – Queueing

❑ priq - Priority-based queue
• defined purely in terms of priority within total declared bandwidth
• priority range:
➢ 0 ~ 15 (packets with high priority is served first)

C
o

m
puter C

enter, C
S, N

C
TU

20

PF in FreeBSD (11) – Queueing

❑ Example with priq:

$ext_bw = “64Kb”

altq on $ext_if priq bandwidth $ext_bw queue { q_pri, q_def }
queue q_pri priority 7
queue q_def priority 1

pass out on $ext_if queue (q_def, q_pri)

C
o

m
puter C

enter, C
S, N

C
TU

21

PF in FreeBSD (11) – Queueing

❑ cbq - Class-based queue
• defined as constant-sized bandwidth allocation
➢ percentage of total available bandwidth
➢ bandwidth in units of kilobits, megabits or gigabits

• can be subdivded into queues that are assigned priority
➢ priority range:

– 0 ~ 7 (packets with high priority is served first)

C
o

m
puter C

enter, C
S, N

C
TU

22

PF in FreeBSD (11) – Queueing

❑ Example with cbq:

altq on $ext_if cbq bandwidth 2Mb queue { main, ftp, udp, web, ssh, icmp }
queue main bandwidth 18% cbq(default borrow red)
queue ftp bandwidth 10% cbq(borrow red)
queue udp bandwidth 30% cbq(borrow red)
queue web bandwidth 20% cbq(borrow red)
queue ssh bandwidth 20% cbq(borrow red) { ssh_interactive, ssh_bulk }

queue ssh_interactive priority 7 bandwidth 20%
queue ssh_bulk priority 5 bandwidth 80%

queue icmp bandwidth 2% cbq

pass log quick on $ext_if proto tcp to port ssh queue (ssh_bulk, ssh_interactive)
pass in quick on $ext_if proto tcp to port ftp queue ftp
pass in quick on $ext_if proto tcp to port www queue http
pass out on $ext_if proto udp queue udp
pass out on $ext_if proto icmp queue icmp
pass out on $ext_if proto tcp from $localnet to port $client_out

C
o

m
puter C

enter, C
S, N

C
TU

23

PF in FreeBSD (11) – Queueing

❑ hfsc - Hierarchical Packet Scheduler

• uses HFSC algorithm to ensure fair allocation of the bandwidth among
queues in the hierarchy

• can setup guaranteed minimum allocations and hard upper limits
• allocations can vary over time
• can have priority
➢ 0 - 7

C
o

m
puter C

enter, C
S, N

C
TU

24

PF in FreeBSD (11) – Queueing

❑ Example with hfsc:

altq on $ext_if bandwidth $ext_bw hfsc queue { main, spamd }
queue main bandwidth 99% priority 7 qlimit 100 hfsc (realtime 20%, linkshare 99%) \

{ q_pri, q_def, q_web, q_dns }
queue q_pri bandwidth 3% priority 7 hfsc (realtime 0, linkshare 3% red)
queue q_def bandwidth 47% priority 1 hfsc (default realtime 30% linkshare 47% red)
queue q_web bandwidth 47% priority 1 hfsc (realtime 30% linkshare 47% red)
queue q_dns bandwidth 3% priority 7 qlimit 100 hfsc (realtime (30Kb 3000 12Kb), \

linkshare 3%)
queue spamd bandwidth 0% priority 0 qlimit 300 hfsc (realtime 0, upperlimit 1%, \

linkshare 1%)

C
o

m
puter C

enter, C
S, N

C
TU

25

PF in FreeBSD (12) – Translation

❑ Translation
• Modify either the source or destination address of the packets
• The translation engine modifies the specified address and/or port in

the packet, and then passes it to the packet filter for evaluation.
• Filter rules filter based on the translated address and port number
• Packets passed directly if the pass modifier is given in the rule

C
o

m
puter C

enter, C
S, N

C
TU

26

PF in FreeBSD (13) – Translation

❑ Various types of translation
• binat – bidirectional mapping between an external IP netblock and an

internal IP netblock
➢ binat on $ext_if from 10.1.2.150 to any -> 140.113.235.123
➢ binat on $ext_if from 192.168.1.0/28 to any -> 140.113.24.0/28

• nat – IP addresses are to be changes as the packet traverses the given
interface
➢ no nat on $ext_if from 192.168.123.234 to any
➢ nat pass on $ext_if from 192.168.123.0/24 to any -> 140.113.235.21

• rdr – redirect packets to another destination and possibly different port
➢ no rdr on $int_if proto tcp from any to $server port 80
➢ rdr on $int_if proto tcp from any to any port 80 -> 127.0.0.1 port 80

C
o

m
puter C

enter, C
S, N

C
TU

27

PF in FreeBSD (14) – Translation

❑ Evaluation
• Evaluation order of translation rules depends on the type
➢ binat rules first, and then either rdr rules for inbound packets or nat rules

for outbound packets
• Rules of the same type are evaluated in the order of appearing in the

ruleset
• The first matching rule decides what action is taken
• If no rule matches the packet, it is passed to the filter unmodified

C
o

m
puter C

enter, C
S, N

C
TU

28

PF in FreeBSD (15) – Packet filtering

❑ pf has the ability to block and pass packets based on
• layer 3(ip, ip6) and layer 4(icmp, icmp6, tcp, udp) headers

❑ Each packet processed by the filter
• The filter rules are evaluated in sequential order
• The last matching rule decides what action is taken
• If no rule matches the packet, the default action is to pass

❑ Format
• {pass | block [drop | return]} [in | out] [log] [quick]

[on ifname] … {hosts} …
• The simplest to block everything by default: specify the first filter rule
➢ block all

C
o

m
puter C

enter, C
S, N

C
TU

29

PF in FreeBSD (16) – Packet filtering

❑ States
• If the packet is passed, state is created unless the no state is specified
➢ The first time a packet matches pass, a state entry is created
➢ For subsequent packets, the filter checks whether each matches any state
➢ For TCP, also check its sequence numbers
➢ pf knows how to match ICMP replies to states

– Port unreachable for UDP
– ICMP echo reply for echo request
– …

➢ Stores in BST for efficiency

C
o

m
puter C

enter, C
S, N

C
TU

30

PF in FreeBSD (17) – Packet filtering

❑ Parameters
• in | out – apply to imcoming or outgoing packets
• log - generate log messages to pflog (pflog0, /var/log/pflog)
➢ Default the packet that establishes the state is logged

• quick – the rule is considered the last matching rule
• on ifname – apply only on the particular interface
• inet | inet6 – apply only on this address family
• proto {tcp | udp | icmp | icmp6} – apply only on this protocol

C
o

m
puter C

enter, C
S, N

C
TU

31

PF in FreeBSD (18) – Packet filtering

❑ Parameters
• hosts : { from host [port [op] #] to host [port [op] #] | all }
• host:
➢ host can be specified in CIDR notation, hostnames, interface names,

table, or keywords any, self, …
➢ Hostnames are translated to address(es) at ruleset load time.
➢ When the address of an interface or hostname changes, the ruleset must

be reloaded
➢ When interface name is surrounded by (), the rule is automatically

updated whenever the interface changes its address
• port:
➢ ops: unary(=, !=, <, <=, >, >=), and binary(:, ><, <>)

• eg.
➢ block in all
➢ pass in proto tcp from any port <= 1024 to self port 33333:44444

C
o

m
puter C

enter, C
S, N

C
TU

32

PF in FreeBSD (19) – Packet filtering

❑ Parameters
• flags {<a>/ | any} – only apply to TCP packets
➢ Flags: (F)IN, (S)YN, (R)ST, (P)USH, (A)CK, (U)RG, (E)CE, C(W)R
➢ Check flags listed in , and see if the flags (not) in <a> is (not) set
➢ eg.

– flags S/S : check SYN is set, ignore others.
– flags S/SA: check SYN is set and ACK is unset., ignore others

➢ Default flags S/SA for TCP
• icmp-type type code code
• icmp6-type type code code
➢ Apply to ICMP and ICMP6 packets

• label – for per-rule statistics
• {tag | tagged} string
➢ tag by nat, rdr, or binat, and identify by filter rules.

C
o

m
puter C

enter, C
S, N

C
TU

33

PF in FreeBSD (20) - load balance

❑ Load balance
• For nat and rdr rules
• eg.
➢ rdr on $ext_if proto tcp from any to any port 80 \

-> {10.1.2.155, 10.1.2.160, 10.1.2.161} round-robin

C
o

m
puter C

enter, C
S, N

C
TU

34

PF in FreeBSD (22) – Security

❑ For security consideration
• state modulation
➢ Applying modulate state parameter to a TCP connection

• syn proxy
➢ Applying synproxy state parameter to a TCP connection

– Include modulate state

C
o

m
puter C

enter, C
S, N

C
TU

35

PF in FreeBSD (22) – Stateful tracking

❑ Stateful tracking options
• keep state, modulate state, and synproxy state support these options
➢ keep state must be specidied explicitly to apply options to a rule

• eg.
➢ table <bad_hosts> persist
➢ block quick from <bad_hosts>
➢ pass in on $ext_if proto tcp to ($ext_if) port ssh keep state \

(max-src-conn-rate 5/30, overload <bad_hosts> flush global)

C
o

m
puter C

enter, C
S, N

C
TU

36

PF in FreeBSD (22) – Stateful tracking

❑ Synproxy state

C
o

m
puter C

enter, C
S, N

C
TU

37

PF in FreeBSD (23) – Blocking spoofed

❑ Blocking spoofed traffic
• antispoof for ifname
• antispoof for lo0
➢ block drop in on ! lo0 inet from 127.0.0.1/8 to any
➢ block drop in on ! lo0 inet6 from ::1 to any

• antispoof for wi0 inet (IP: 10.0.0.1, netmask 255.255.255.0)
➢ block drop in on ! wi0 inet from 10.0.0.0/24 to any
➢ block drop in inet from 10.0.0.1 to any

• Pitfall:
➢ Rules created by the antispoof interfere with packets sent over loopback

interfaces to local addresses. One should pass these explicitly.
➢ set skip on lo0

C
o

m
puter C

enter, C
S, N

C
TU

38

PF in FreeBSD (24) – Anchors

❑ Besides the main ruleset, pf can load rulesets into anchor
attachment points

• An anchor is a container that can hold rules, address tables, and
other anchors

• The main ruleset is actually the default anchor
• An anchor can reference another anchor attachment point using
➢ nat-anchor
➢ rdr-anchor
➢ binat-anchor
➢ anchor
➢ load anchor <name> from <file>

C
o

m
puter C

enter, C
S, N

C
TU

39

PF in FreeBSD (25)

❑ Ex. # macro definitions
extdev='fxp0‘
server_ext=‘140.113.214.13’

options
set limit { states 10000, frags 5000 }
set loginterface $extdev
set block-policy drop
set skip on lo0

tables
table <badhosts> persist file “/etc/badhosts.list”

filtering rules
block in all
pass out all
antispoof for $extdev
block log in on $extdev proto tcp from any to any port {139, 445}
block log in on $extdev proto udp from any to any port {137, 138}
block on $extdev quick from <badhosts> to any
pass in on $extdev proto tcp from 140.113.0.0/16 to any port {139, 445}
pass in on $extdev proto udp from 140.113.0.0/16 to any port {137, 138}

C
o

m
puter C

enter, C
S, N

C
TU

40

NAT on FreeBSD (1)

❑ Setup
• Network topology
• configuration
• Advanced redirection

configuration

192.168.1.1
Web server

192.168.1.2
Ftp Server

192.168.1.101
PC1

C
o

m
puter C

enter, C
S, N

C
TU

41

NAT on FreeBSD (2)

❑ IP configuration (in /etc/rc.conf)
ifconfig_fxp0="inet 140.113.235.4 netmask 255.255.255.0 media autoselect"
ifconfig_fxp1="inet 192.168.1.254 netmask 255.255.255.0 media autoselect“
defaultrouter="140.113.235.254“

❑ Enable NAT
• Here we use Packet Filter (PF) as our NAT server
• Configuration file: /etc/pf.conf
➢ nat
➢ rdr
➢ binat

macro definitions
extdev='fxp0‘
intranet='192.168.1.0/24‘
webserver=‘192.168.1.1’
ftpserver=‘192.168.1.2’
pc1=‘192.168.1.101’

nat rules
nat on $extdev inet from $intranet to any -> $extdev
rdr on $extdev inet proto tcp to port 80 -> $webserver port 80
rdr on $extdev inet proto tcp to port 443 -> $webserver port 443
rdr on $extdev inet proto tcp to port 21 -> $ftpserver port 21

C
o

m
puter C

enter, C
S, N

C
TU

42

NAT on FreeBSD (3)

macro definitions
extdev='fxp0‘
intranet='192.168.219.0/24‘
winxp=‘192.168.219.1’
server_int=‘192.168.219.2’
server_ext=‘140.113.214.13’

nat rules
nat on $extdev inet from $intranet to any -> $extdev
rdr on $extdev inet proto tcp to port 3389 -> $winxp port 3389
binat on $extdev inet from $server_int to any -> $server_ext

C
o

m
puter C

enter, C
S, N

C
TU

43

Redundancy and Failover -
CARP and pfsync

❑ Common Address Redundancy Protocol
• non-patent-encumbered alternative to the Virtual Router

Redundancy Protocol (VRRP)
• ensure firewall/services will keep functioning under
➢ errors
➢ planned maintenence

• authenticated redundancy

C
o

m
puter C

enter, C
S, N

C
TU

44

Redundancy and Failover -
CARP and pfsync

❑ Common Address Redundancy Protocol
• parameters
➢ vhid (virtual host id)

– consistent vhid for each machine participating in the virtual group
➢ advbase (sec): interval of the advertisement (default: 1sec)
➢ advskew (1/256 sec): added to the base advertisement interval to

make one host advertise a bit slower
• demotion
➢ indicate the readiness of a particular host

• the advertisement interval will be:
➢ advbase + (advskew+demotion)/256 (secs)

C
o

m
puter C

enter, C
S, N

C
TU

45

Setting up CARP

❑ In /boot/loader.conf:
• carp_load=”YES”

❑ Load the module without rebooting
• kldload carp

❑ In /etc/rc.conf

Host A
ifconfig_em0=”inet 10.0.0.2 netmask 255.255.2jjjjkk55.0”
ifconfig_em0_alias0=”vhid 1 advskew 100 pass youneverknow 10.0.0.1/24”

Host B
ifconfig_em0=”inet 10.0.0.3 netmask 255.255.255.0”
ifconfig_em0_alias0=”vhid 1 advskew 200 pass youneverknow 10.0.0.1/24”

C
o

m
puter C

enter, C
S, N

C
TU

46

Setting up CARP

❑ In /etc/pf.conf:
• pass proto carp

C
o

m
puter C

enter, C
S, N

C
TU

47

Redundancy and Failover -
CARP and pfsync

❑ Common Address Redundancy Protocol
• global parameters set using sysctl
➢ net.inet.carp.allow (default to 1)
➢ net.inet.carp.preempt (default to 0)
➢ net.inet.carp.log (default to 1)
➢ net.inet.carp.log.demotion (default to 0)
➢ net.inet.carp.ifdown_demotion_factor (default to 240)
➢ net.inet.carp.senderr_demotion_factor (default to 240)

• force preemption
➢ ifconfig em0 vhid 1 state master

C
o

m
puter C

enter, C
S, N

C
TU

48

Redundancy and Failover -
CARP and pfsync

❑ pfsync
• synchronize the active connections state to redundant firewall
• caveat! the protocol is unecrypted itself, you must either:
➢ setup an encrypted tunnel (e.g. ipsec, openvpn…)
➢ use a crosswire to connect the redundant pair directly

C
o

m
puter C

enter, C
S, N

C
TU

49

Setting up pfsync

❑ In /boot/loader.conf:
• pfsync_load=”YES”

❑ In /etc/rc.conf:
• ifconfig_em1=”inet 192.168.0.253/24”
• pfsync_enable=”YES”
• pfsync_syncdev=”em1”

❑ Enable using command line
• kldload pfsync
• ifconfig pfsync0 syncdev em1

❑ Sysctl tunable
• net.pfsync.carp_demotion_factor

