Firewalls

m
®)
3

O
c
~
Q)
ﬁ
m
)
S
~
)

Firewalls

d Firewall

* A piece of hardware and/or software which functions in a networked
environment to prevent some communications forbidden by the security
policy.

» Choke point between secured and unsecured network

 Filter incoming and outgoing traffic that flows through your system

d What it can be used to do

» To protect and insulate the applications, services and machines of your
internal network from unwanted traffic coming in from the public Internet

> Such as telnet, NetBIOS

* To limit or disable access from hosts of the internal network to services of
the public Internet

> Such as MSN, ssh, ftp
* To support NAT (Network Address Translation)

Firewalls — Layers of Firewalls

d Network Layer Firewalls
» Operate at a low level of TCP/IP stack as IP-packet filters.
« Filter attributes

)
®)
3
O
c
~
Q)
ﬁ
)
)
S
~
)
)

> Source/destination [P

> Source/destination port
> TTL

> Protocols

>

(d Application Layer Firewalls

» Work on the application level of the TCP/IP stack.

» Inspect all packets for improper content, a complex work!
(d Application Firewalls

» The access control implemented by applications.

Firewall Rules

d Two ways to create firewall rulesets

 Exclusive

m
®)
3

O
c
~
Q)
ﬁ
m
)
S
~
)

> Allow all traffic through except for the traffic matching the rulesets
 Inclusive

> Allow traffic matching the rulesets and blocks everything else

> Offer much better control of the outgoing traffic

> Control the type of traffic originating from the public Internet that can
gain access to your private network

> Safer than exclusive one
— reduce the risk of allowing unwanted traffic to pass
— Increase the risk to block yourself with wrong configuration

Jd Stateful firewall

» Keep track of which connections are opened through the firewall

» Be vulnerable to Denial of Service (DoS) attacks

Firewall Packages

d FreeBSD
e IPFILTER (known as IPF)
 IPFIREWALL (known as IPFW) + Dummynet
* Packet Filter (known as PF)+ ALTQ

J Solaris
 [PF

J Linux

* 1pchains

Q)
@)
3
O
C
©
=
Q)
)
3
©
>
@

* iptables

Packet Filter (PF)

] Introduction
» Packet filtering
» Translation (NAT)
 Alternate Queuing (ALTQ) for QoS , bandwidth limit
* Load balance

Q)
@)
3
O
C
©
=
Q)
)
3
©
>
@

 Failover (pfsync + carp)

 Firewall migrated from OpenBSD
> http://www.openbsd.org/faq/pt/

ADSL 1

ADSL 2

ADSL 3
Round-robin

http://www.openbsd.org/faq/pf/
http://www.openbsd.org/faq/pf/

PF in FreeBSD (1) — enabling pf

J Enable pf in /etc/rc.conf (pf.ko loaded automatically)
pf enable="YES"

m
®)
3

O
c
~
Q)
ﬁ
m
)
S
~
)

1 Rebuild Kernel (if pfsync, ALTQ is needed)
device pf # Enable “Packet Filter” firewall
device pflog # pseudo device to log traffic
device pfsync # pseudo device to monitor “state changes”
options ALTQ
options ALTQ CBQ # Class based queueing
options ALTQ PRIQ # Priority queueing
options ALTQ {RED | RIO}# Avoid network congestion
options ALTQ HFSC # Hierarchical Fair Service Curve
Ref: http://www-2.cs.cmu.edu/~hzhang/HFSC/main.html

http://www-2.cs.cmu.edu/~hzhang/HFSC/main.html
http://www-2.cs.cmu.edu/~hzhang/HFSC/main.html

PF in FreeBSD (2) — enabling pflog

(J Enable pflog in /etc/rc.conf (pflog.ko loaded automatically)

* pflog enable="YES*
> Log to pflog0 interface

)
®)
3
O
c
~
Q)
ﬁ
)
)
S
~
)
)

> tcpdump —1 pflog0

» pflog logfile="/var/log/pflog*
> tcpdump -r /var/log/pflog

1 Create firewall rules
» Default configuration rules
> pf rules="/etc/pf.conf”
« Sample files
> /usr/share/examples/pt/*

PF in FreeBSD (3) — related commands

 PF rc script: /etc/rc.d/pf
* start / stop / restart / status / check / reload
1 PF command: pfctl
e -¢/-d
e -F {nat | rulse | state | info | Tables | all | ...}
e -v -s {nat | rules | state | info | all | Anchors | Tables | ...}

)
®)
3
O
c
~
Q)
ﬁ
m
)
S
~
)
)

e -v -n-f/etc/pf.conf

« {-f|-A|-O|-N|-R} /etc/pf.conf

« -t <table>-T {add | delete| test} {1ip ...}
» -t<table>-T {show | kill | flush| ...}

e -k {host | network} [-k {host | network}]

e -a {anchor} ...
> Ex.-a ‘*’, -a ‘ftp-proxy/*’

PF 1n FreeBSD (4) — config ordering

m
®)
3

O
c
~
Q)
ﬁ
m
)
S
~
)

(d Macros
 user-defined variables, so they can be referenced and changed easily.
1 Tables “table”
 similar to macros, but efficient and more flexible for many addresses.
1 Options “set”
* tune the behavior of pf, default values are given.
(d Normalization “scrub”
* reassemble fragments and resolve or reduce traffic ambiguities.
[Queueing “altq”, “queue”
* rule-based bandwidth control.
(1 Translation (NAT) “rdr”, “nat”, “binat”
» specify how addresses are to be mapped or redirected to other addresses
* First match rules
1 Filtering “antispoof™, “block”, “pass”

 rule-based blocking or passing packets
« Last match rules

PF in FreeBSD (5) — Lists

J Lists

« Allow the specification of multiple similar criteria within a rule

> multiple protocols, port numbers, addresses, etc.

)
®)
3
O
c
~
Q)
ﬁ
)
)
S
~
)
)

 defined by specifying items within { } brackets.

* eg.
> pass out on rl0 proto { tcp, udp } from { 192.168.0.1, 10.5.32.6 } to any
> pass in on fxp0 proto tcp to port { 22 80 }

 Pitfall
> pass in on fxp0 from { 10.0.0.0/8,110.1.2.3 }

> You mean (It means)
1. pass in on fxp0 from 10.0.0.0/8

2. block in on fxp0 from 10.1.2.3
2. pass in on fxp0 from !10.1.2.3

> Use table, instead.

PF in FreeBSD (6) — Macros

4 Macros

 user-defined variables that can hold IP addresses, port numbers,
interface names, etc.

)
®)
3
O
c
~
Q)
ﬁ
)
)
S
~
)
)

 reduce the complexity of a pf ruleset and also make maintaining a
ruleset much easier.

« Naming: start with [a-zA-Z] and may contain [a-zA-Z0-9]
. eg.

> ext if = "fxp0*

> block in on $ext_if from any to any
e Macro of macros

> hostl ="192.168.1.1¢

> host2 ="192.168.1.2

> all hosts ="{" $hostl $host2 "}"

PF in FreeBSD (7) — Tables

 Tables
 used to hold a group of IPv4 and/or IPv6 addresses

> hostname, inteface name, and keyword self

)
®)
3
O
c
~
Q)
ﬁ
m
)
S
~
)
)

» Lookups against a table are very fast and consume less memory and
processor time than lists
« Two attributes
> persist: keep the table in memory even when no rules refer to it
> const: cannot be changed once the table is created
* eg.
> table <private> const { 10/8, 172.16/12, 192.168/16 }
> table <badhosts> persist
> block on fxp0 from { <private>, <badhosts> } to any

> table <spam> persist file "/etc/spammers" file "/etc/openrelays"

PF 1in FreeBSD (8) — Tables

(J Tables — Address Matching

* An address lookup against a table will return the most narrowly
matching entry

° eg.
> table <goodguys> { 172.16.0.0/16, 1172.16.1.0/24, 172.16.1.100 }
> block in on dc0
> pass in on dc0 from <goodguys>

* Result
> 172.16.50.5 passed
> 172.16.1.25 blocked
> 172.16.1.100 passed
> 10.1.4.55 blocked

)
®)
3
O
c
~-
Q)
ﬁ
)
)
S
~-
)
)

PF in FreeBSD (9) — Options

J Format

 control pf's operation, and specified in pf.conf using “set”

m
®)
3

O
c
~
Q)
ﬁ
m
)
S
~
)

> Format: set option [sub-ops] value
1 Options

 loginterface — collect packets and gather byte count statistics

ruleset-optimization — ruleset optimizer
> none, basic, profile

> basic: remove dups, remove subs, combine into a table, re-order rules

block-policy — default behavior for blocked packets

> drop, return

skip on {ifname} — interfaces for which packets should not be filtered.
> eg. set skip on 100

timeout, limit, optimization, state-policy, hostid, require-order,
fingerprints, debug

)
®)
3
O
c
~
Q)
ﬁ
m
)
S
~
)
)

PF 1n FreeBSD (10) — Normalization

d Traffic Normalization

[P fragment reassembly

>

scrub 1n all

e Default behavior

>

>

V.V

Fragments are buffered until they form a complete packet, and only the
completed packet is passed on to the filter.

Advantage: filter rules have to deal only with complete packets, and
ignore fragments.

Disadvantage: caching fragments is the additional memory cost

The full reassembly method is the only method that currently works
with NAT.

PF 1in FreeBSD (11) — Queueing

O
O
=

S
CcC
o
=
a0 ALTQ
3
o
iy
A
<
0
-

PF in FreeBSD (11) — Queueing

1 Queue scheduler (a.k.a. Queue disciplines)
e Default: FIFO (without ALTQ)
 priq - Priority-based Queueing
* cbq - Class-based Queueing

D)
o)
3
O
c
~-
Q)
ﬁ
)
)
S
~-
)
)
a

» hfsc - Hierarchical Fair Service Curve

PF in FreeBSD (11) — Queueing

(] priq - Priority-based queue
 defined purely in terms of priority within total declared bandwidth
* priority range:
> 0~ 15 (packets with high priority is served first)

0
0
3
S
S
®
ﬁ
0
)
S
®
)
&
<

PF 1in FreeBSD (11) — Queueing

[Example with priq:

O
o
3

O
C
©
=~
0
M
S
©
.
9
<
Q
-

PF in FreeBSD (11) — Queueing

(1 cbq - Class-based queue
» defined as constant-sized bandwidth allocation

> percentage of total available bandwidth
> bandwidth in units of kilobits, megabits or gigabits

)
®)
3
O
c
~-
Q)
ﬁ
)
)
S
~-
)
)
a

 can be subdivded into queues that are assigned priority
> priority range:
— 0~ 7 (packets with high priority is served first)

PF 1in FreeBSD (11) — Queueing

d Example with cbq:

O
o
3

O
C
©
=~
0
M
S
©
.
9
<
Q
-

PF in FreeBSD (11) — Queueing

A hfsc - Hierarchical Packet Scheduler

» uses HFSC algorithm to ensure fair allocation of the bandwidth among
queues in the hierarchy

)
®)
3
O
c
~-
Q)
ﬁ
)
)
S
~-
)
)
a

* can setup guaranteed minimum allocations and hard upper limits
« allocations can vary over time

 can have priority
> 0-7

PF 1in FreeBSD (11) — Queueing

1 Example with hfsc:

O
o
3

O
C
©
=~
0
M
S
©
.
9
<
Q
-

PF 1n FreeBSD (12) — Translation

d Translation

Modify either the source or destination address of the packets

)
®)
3
O
c
~
Q)
ﬁ
)
)
S
~
)
)

The translation engine modifies the specified address and/or port in
the packet, and then passes it to the packet filter for evaluation.

Filter rules filter based on the translated address and port number

Packets passed directly if the pass modifier is given in the rule

PF 1n FreeBSD (13) — Translation

(d Various types of translation
 binat — bidirectional mapping between an external IP netblock and an
internal IP netblock
> binat on $ext if from 10.1.2.150 to any -> 140.113.235.123
> binat on $ext if from 192.168.1.0/28 to any -> 140.113.24.0/28

» nat — [P addresses are to be changes as the packet traverses the given
interface
> no nat on $ext if from 192.168.123.234 to any
> nat pass on $ext_if from 192.168.123.0/24 to any -> 140.113.235.21

 rdr — redirect packets to another destination and possibly different port

m
®)
3

O
c
~
Q)
ﬁ
m
)
S
~
)

> no rdr on $int_if proto tcp from any to $server port 80
> rdr on $int_if proto tcp from any to any port 80 -> 127.0.0.1 port 80

PF 1n FreeBSD (14) — Translation

d Evaluation

« Evaluation order of translation rules depends on the type

)
®)
3
O
c
~
Q)
ﬁ
)
)
S
~
)
)

> binat rules first, and then either rdr rules for inbound packets or nat rules
for outbound packets

» Rules of the same type are evaluated in the order of appearing in the
ruleset

 The first matching rule decides what action is taken

 If no rule matches the packet, it is passed to the filter unmodified

PF in FreeBSD (15) — Packet filtering

d pf has the ability to block and pass packets based on
 layer 3(ip, 1p6) and layer 4(icmp, icmp6, tcp, udp) headers

m
®)
3

O
c
~
Q)
ﬁ
m
)
S
~
)

1 Each packet processed by the filter
» The filter rules are evaluated in sequential order
» The last matching rule decides what action is taken

 If no rule matches the packet, the default action is to pass

J Format

e {pass | block [drop | return]} [in]|out] [log] [quick]
[on ifname] ... {hosts} ...

» The simplest to block everything by default: specify the first filter rule
> block all

PF in FreeBSD (16) — Packet filtering

J States

« If the packet is passed, state 1s created unless the no state 1s specified

)
®)
3
O
c
~
Q)
ﬁ
)
)
S
~
)
)

> The first time a packet matches pass, a state entry is created

> For subsequent packets, the filter checks whether each matches any state
> For TCP, also check its sequence numbers

> pfknows how to match ICMP replies to states
— Port unreachable for UDP
— ICMP echo reply for echo request

> Stores in BST for efficiency

PF in FreeBSD (17) — Packet filtering

J Parameters

 in | out — apply to imcoming or outgoing packets

)
®)
3
O
c
~
Q)
ﬁ
m
)
S
~
)
)

* log - generate log messages to pflog (pflog0, /var/log/pflog)
> Default the packet that establishes the state is logged

quick — the rule 1s considered the last matching rule

on ifname — apply only on the particular interface

inet | inet6 — apply only on this address family

proto {tcp | udp | icmp | icmp6} — apply only on this protocol

PF in FreeBSD (18) — Packet filtering

(1 Parameters
* hosts : { from host [port [op] # | to host [port [op] #] | all }
* host:

> host can be specified in CIDR notation, hostnames, interface names,
table, or keywords any, self, ...

> Hostnames are translated to address(es) at ruleset load time.

> When the address of an interface or hostname changes, the ruleset must
be reloaded

> When interface name is surrounded by (), the rule is automatically
updated whenever the interface changes its address

* port:
> ops: unary(=, 1=, <, <=, >, >=), and binary(:, ><, <>)
* eg.
> block in all
> pass in proto tcp from any port <= 1024 to self port 33333:44444

PF in FreeBSD (19) — Packet filtering

(] Parameters
e flags {<a>/| any} — only apply to TCP packets
> Flags: (F)IN, (S)YN, (R)ST, (P)USH, (A)CK, (U)RG, (E)CE, C(W)R
> Check flags listed in , and see if the flags (not) in <a> is (not) set
> eg.
— flags S/S : check SYN is set, ignore others.
— flags S/SA: check SYN is set and ACK is unset., ignore others

> Default flags S/SA for TCP
icmp-type type code code
icmp6-type type code code

> Apply to ICMP and ICMP6 packets
label — for per-rule statistics

{tag | tagged} string
> tag by nat, rdr, or binat, and identify by filter rules.

)
®)
3
O
c
~
Q)
ﬁ
m
)
S
~
)
)

PF in FreeBSD (20) - load balance

d Load balance

* For nat and rdr rules

* eg.
> rdr on $ext_if proto tcp from any to any port 80 \
-=> {10.1.2.155, 10.1.2.160, 10.1.2.161} round-robin

0
0
3

S
S
®
ﬁ
0
)
S
®
)
&

PF in FreeBSD (22) — Security

(J For security consideration
* state modulation
> Applying modulate state parameter to a TCP connection
* Syn proxy
> Applying synproxy state parameter to a TCP connection

D)
o)
3
O
c
~-
Q)
ﬁ
)
)
S
~-
)
)
a

— Include modulate state

PF in FreeBSD (22) — Stateful tracking

) Stateful tracking options

* keep state, modulate state, and synproxy state support these options
> keep state must be specidied explicitly to apply options to a rule

* eg.
> table <bad hosts> persist
> block quick from <bad hosts>

> pass in on $ext_if proto tcp to ($ext if) port ssh keep state \
(max-src-conn-rate 5/30, overload <bad hosts> flush global)

)
®)
3
O
c
~
Q)
ﬁ
)
)
S
~
)
)
@)

D)
o)
3
O
c
~-
Q)
ﬁ
)
)
S
~-
)
)
a

PF in FreeBSD (22) — Stateful tracking

Q Synproxy state

-

Non-Attack Behavior
Firewall/Prooxy

> <

ﬂm exchanged,
with Smmm mtnmlued by Proocy)

Attack Eehavior
Imitiator Firewall/Proxy Listener

Vi

(No SYN segments ever seen by Listener)

PF in FreeBSD (23) — Blocking spoofed

J Blocking spoofed traffic

* antispoof for ifname

« antispoof for 100
> block drop in on ! 100 inet from 127.0.0.1/8 to any
> block drop in on ! 100 inet6 from ::1 to any

« antispoof for wi0 inet (IP: 10.0.0.1, netmask 255.255.255.0)
> block drop in on ! wi0 inet from 10.0.0.0/24 to any
> block drop in inet from 10.0.0.1 to any

« Pitfall:

> Rules created by the antispoof interfere with packets sent over loopback
interfaces to local addresses. One should pass these explicitly.

)
®)
3
O
c
~
Q)
ﬁ
m
)
S
~
)
)

> set skip on 100

PF 1n FreeBSD (24) — Anchors

J Besides the main ruleset, pf can load rulesets into anchor
attachment points

* An anchor 1s a container that can hold rules, address tables, and
other anchors

)
®)
3
O
c
~
Q)
ﬁ
m
)
S
~
)
)

» The main ruleset is actually the default anchor

* An anchor can reference another anchor attachment point using
> nat-anchor
> rdr-anchor
> binat-anchor
> anchor

> load anchor <name> from <file>

m
o)
3

O
C
~
)
ﬁ
m
)
S
~

PF 1n FreeBSD (25)

d Ex.

macro definitions
extdev="fxp0°*
server_ext=140.113.214.13’

options

set limit { states 10000, frags 5000 }
set loginterface $extdev

set block-policy drop

set skip on lo0

tables
table <badhosts> persist file “/etc/badhosts.list”

filtering rules

block in all

pass out all

antispoof for $extdev

block log in on $extdev proto tcp from any to any port {139, 445}

block log in on $extdev proto udp from any to any port {137, 138}

block on $extdev quick from <badhosts> to any

pass in on $extdev proto tcp from 140.113.0.0/16 to any port {139, 445}
pass in on $extdev proto udp from 140.113.0.0/16 to any port {137, 138}

NAT on FreeBSD (1)

Other public service

M| Setup Un-protected area
» Network topology

 configuration

* Advanced redirection

configuration Public 140.113.235.4
Protected area

Q)
@)
3
O
C
©
=
Q)
)
3
©
>
@

Uplink to Internet

192.168.1.1
Web server

192.168.1.2
Ftp Server

192.168.1.101
PCl1

Private network Hosts

J Enable NAT

NAT on FreeBSD (2)

[IP configuration (in /etc/rc.conf)
ifconfig fxp0="inet 140.113.235.4 netmask 255.255.255.0 media autoselect"
ifconfig fxpl="inet 192.168.1.254 netmask 255.255.255.0 media autoselect*
defaultrouter="140.113.235.254*

« Here we use Packet Filter (PF) as our NAT server

* Configuration file: /etc/pf.conf

> nat
> rdr
> binat

macro definitions
extdev="fxp0*
intranet='192.168.1.0/24°
webserver=192.168.1.1°
ftpserver=192.168.1.2°
pcl=192.168.1.101"

nat rules

nat on $extdev inet from $intranet to any -> Sextdev

rdr on $extdev inet proto tcp to port 80 -> $webserver port 80
rdr on $extdev inet proto tcp to port 443 -> $webserver port 443
rdr on $extdev inet proto tcp to port 21 -> $ftpserver port 21

NAT on FreeBSD (3)

macro definitions
extdev="fxp0*
intranet='192.168.219.0/24¢
winxp=192.168.219.1°
server int="192.168.219.2°
server_ext=‘140.113.214.13’

D)
o)
3
O
c
~-
Q)
ﬁ
)
)
S
~-
)
)
a

nat rules

nat on $extdev inet from $intranet to any -> $extdev

rdr on $extdev inet proto tcp to port 3389 -> $winxp port 3389
binat on $extdev inet from $server_int to any -> $server_ext

Redundancy and Failover -
CARP and pfsync

J Common Address Redundancy Protocol

e non-patent-encumbered alternative to the Virtual Router
Redundancy Protocol (VRRP)

 ensure firewall/services will keep functioning under
> eITorsS
> planned maintenence

 authenticated redundancy

)
®)
3
O
c
~-
Q)
ﬁ
)
)
S
~-
)
)

Redundancy and Failover -
CARP and pfsync

J Common Address Redundancy Protocol

* parameters

> vhid (virtual host id)
— consistent vhid for each machine participating in the virtual group
> advbase (sec): interval of the advertisement (default: 1sec)

> advskew (1/256 sec): added to the base advertisement interval to
make one host advertise a bit slower
* demotion
> 1indicate the readiness of a particular host
» the advertisement interval will be:
> advbase + (advskew+demotion)/256 (secs)

)
®)
3
O
c
~
Q)
ﬁ
m
)
S
~
)
)

Setting up CARP

d In /boot/loader.conf:
e carp load="YES”

J Load the module without rebooting
» kldload carp

d In /etc/rc.conf

O
©)
=

O
S
®
=
)
®
3
®
<
%
<
&
-

Setting up CARP

 In /etc/pf.conf:

* pass proto carp

O
O
3

O
C
)
=
0
()
S
®
<
&
=
2
C

Redundancy and Failover -
CARP and pfsync

J Common Address Redundancy Protocol

» global parameters set using sysctl
net.inet.carp.allow (default to 1)
net.inet.carp.preempt (default to 0)
net.inet.carp.log (default to 1)
net.inet.carp.log.demotion (default to 0)
net.inet.carp.ifdown_demotion_factor (default to 240)
net.inet.carp.senderr demotion factor (default to 240)
« force preemption

> ifconfig emO vhid 1 state master

)
®)
3
O
c
~
Q)
ﬁ
)
)
S
~
)
)

VYVVVY

Redundancy and Failover -
CARP and pfsync

d pfsync
» synchronize the active connections state to redundant firewall
« caveat! the protocol 1s unecrypted itself, you must either:

> setup an encrypted tunnel (e.g. ipsec, openvpn...)
> use a crosswire to connect the redundant pair directly

D)
®)
3
O
c
~-
Q)
ﬁ
)
)
S
~-
)
)
a

)
®)
3
O
c
~
Q)
ﬁ
)
)
S
~
)
)

Setting up pfsync

d In /boot/loader.conf:
e pfsync load="YES”

[In /etc/rc.conf:
« ifconfig eml="1net 192.168.0.253/24”
* pisync _enable="YES”
e pfsync syncdev="eml”
J Enable using command line
» kldload pfsync
 1fconfig pfsyncO syncdev eml
(1 Sysctl tunable

* net.pfsync.carp demotion factor

