Routing

Dynamic RouteRouting Protocol

Why dynamic route ? (1)

□ Static route is ok only when

- Network is small
- There is a single connection point to other network
- No redundant route

Why dynamic route ? (2)

Dynamic Routing

- Routers update their routing table with the information of adjacent routers
- Dynamic routing need a routing protocol for such communication
- Advantage:
 - They can react and adapt to changing network condition

Routing Protocol

Used to change the routing table according to various routing information

- Specify detail of communication between routers
- Specify information changed in each communication,
 - Network reachability
 - > Network state
 - > Metric

Metric

- A measure of how good a particular route
 > Hop count, bandwidth, delay, load, reliability, ...
- Each routing protocol may use different metric and exchange different information

Autonomous System

□ Autonomous System (AS)

- Internet is organized into a collection of autonomous system
- An AS is a collection of networks with same routing policy
 - Single routing protocol
 - Normally administered by a single entity

Category of Routing Protocols – by AS

AS-AS communication

- Communications between routers in different AS
- Interdomain routing protocols
- Exterior gateway protocols (EGP)
- Ex:
 - BGP (Border Gateway Protocol)

Inside AS communication

- Communication between routers in the same AS
- Intradomain routing protocols
- Interior gateway protocols (IGP)
- Ex:
 - RIP (Routing Information Protocol)
 - IGRP (Interior Gateway Routing Protocol)
 - > OSPF (Open Shortest Path First Protocol)

Intra-AS and Inter-AS routing

Category of Routing Protocols – by information changed (1)

Distance-Vector Protocol

- Message contains a vector of distances, which is the cost to other network
- Each router updates its routing table based on these messages received from neighbors
- Protocols:
 - ≻ RIP
 - ≻ IGRP
 - > BGP

Category of Routing Protocols – by information changed (2)

Link-State Protocol

- Broadcast their link state to neighbors and build a complete network map at each router using Dijkstra algorithm
- Protocols:
 > OSPF

Difference between Distance-Vector and Link-State

Difference		Distance-Vector	Link-State
	Update	updates neighbor (propagate new info.)	update all nodes
	Convergence	Propagation delay cause slow convergence	Fast convergence
	Complexity	simple	Complex

Information update sequence

Routing Protocols

RIP IGP,DV IGRP IGP,DV OSPF IGP,LS BGP EGP

🗆 RIP

• Routing Information Protocol

Category

- Interior routing protocol
- Distance-vector routing protocol
 - > Using "hop-count" as the cost metric

Example of how RIP advertisements work

Destination network	Next router	# of hops to destination	Destination network	Next router	# of hops to destination	Destination network	Next router	# of hops to destination	
1	A	2	30	C	4	1	А	2	
20	В	2	1		1	20	В	2	
30	В	7	10		1	30	Α	5	

Routing table in router before Receiving advertisement

Advertisement from router A

Routing table after receiving advertisement

Message Format

RIP message is carried in UDP datagram

- Command: 1 for request and 2 for reply
- Version: 1 or 2 (RIP-2)

Operation

- routed RIP routing daemon
 - Operated in UDP port 520
- Operation
 - Initialization
 - Probe each interface
 - send a request packet out each interface, asking for other router's complete routing table
 - Request received
 - > Send the entire routing table to the requestor
 - Response received
 - > Add, modify, delete to update routing table
 - Regular routing updates
 - > Router sends out their routing table to every neighbor every 30 minutes
 - Triggered updates
 - Whenever a route entry's metric change, send out those changed part routing table

Problems of RIP

Issues

- 15 hop-count limits
- Take long time to stabilize after the failure of a router or link
- No CIDR • 0 78 15 16 31 command (1-6) version (2) routing domain **RIP-2** address family (2) route tag EGP support > AS number 32-bit IP address CIDR support 32-bit subnet mask 20 bytes 32-bit next-hop IP address metric (1-16) (up to 24 more routes, with same format as previous 20 bytes)

IGRP (1)

□ IGRP – Interior Gateway Routing Protocol

Similar to RIP

- Interior routing protocol
- Distance-vector routing protocol
- Difference between RIP
 - Complex cost metric other than hop count
 - > delay time, bandwidth, load, reliability
 - > The formula

$$(\frac{bandwith_weight}{bandwith*(1-load)} + \frac{delay_weight}{delay})*reliability$$

- Use TCP to communicate routing information
- Cisco System's proprietary routing protocol

IGRP (2)

□ Advantage over RIP

• Control over metrics

Disadvantage

- Still classful and has propagation delay
- Vendor dependency

OSPF (1)

OSPF

- Open Shortest Path First
- Category
 - Interior routing protocol
 - Link-State protocol
- Each interface is associated with a cost
 - Generally assigned manually
 - The sum of all costs along a path is the metric for that path
- Neighbor information is broadcast to all routers
 - Each router will construct a map of network topology
 - Each router run Dijkstra algorithm to construct the shortest path tree to each routers

OSPF - Diikstra A

– Dijkstra Algorithm

□ Single Source Shortest Path Problem

- Dijkstra algorithm use "greedy" strategy
- Ex:

OSPF – Routing table update example (1)

	R1		
D	Path	M	
R1	direct	0	V
R2	R1-R2	1	V
R3	R1-R3	2	
R4	R1-R4	3	J

OSPF – Routing table update example (2)

	R1		
D	Path	M	
R1	direct	0	¥
R2	R1-R2	1	¥
R3	R1-R3	2	
R4	R1-R2-R4	2	

OSPF

Summary

Advantage

- Fast convergence
- CIDR support
- Multiple routing table entries for single destination, each for one type-of-service
 - Load balancing when cost are equal among several routes

Disadvantage

• Large computation

ISIS (1)

ISIS

Intermediate System to Intermediate System

Category

- Interior routing protocol
- Link-State protocol
- Each interface is associated with a cost
 - Generally assigned manually
 - The sum of all costs along a path is the metric for that path
- Neighbor information is broadcast to all routers
 - Each router run Dijkstra algorithm to construct the shortest path tree to each routers
- □ Rides directly above layer two
 - I/IS-IS runs on top of the Data Link Layer

Comparing ISIS and OSPF (1)

Same

- Interior routing protocol (IGP)
- Link-State protocol
- Classless Inter-Domain Routing (CIDR)
- Variable Subnet Length Masking (VLSM)
- Authentication
- Multi-path
- IP unnumbered links

Comparing ISIS and OSPF (2)

OSPF

- Host
- Router
- Link
- Packet
- Designated Router (DR)
- Backup DR (BDR)
- Link-Stats Advertisement (LSA)
- Hello packet
- Database Description(DBD)

- End System(ES)
- Intermediate System(IS)
- Circuit
- Protocol Data Unit (PDU)
- Designated IS (DIS)
- N/A
- Link-State PDU (LSP)
- IIH PDU
- Complete sequence number PDU (CSNP)

Comparing ISIS and OSPF (3)

OSPF

- Area
- Non-backbone area
- Backbone area
- Area Border Router(ABR)
- Autonomous System Boundary Router (ASBR)

- Sub domain (area)
- Level-1 area
- Level-2 Sub domain (backbone)
- L1L2 router
- Any IS

BGP (1)

🛛 BGP

- Border Gateway Protocol
- Exterior routing protocol
 - Now BGP-4
 - Exchange network reachability information with other BGP systems

Routing information exchange

- Message:
 - Full path of autonomous systems that traffic must transit to reach destination
 - > Can maintain multiple route for a single destination
- Exchange method
 - Using TCP
 - Initial: entire routing table
 - Subsequent update: only sent when necessary
 - > Advertise only optimal path
- Route selection
 - Shortest AS path

BGP (2)

- Incremental Updates
- Many options for policy enforcement
- □ Classless Inter Domain Routing (CIDR)
- □ Widely used for Internet backbone
- Autonomous systems

140.113.0.0/16 *[BGP/170] 1w1d 02:30:41, localpref 200, from 62.115.128.39 AS path: 9505 18185 9916 I

https://nsrc.org/workshops/2016/senix-ixp/presentations/00-BGP-Introduction.pdf

Routing Protocols Comparison

	RIP	IGRP	OSPF	BGP4
DV or LS	DV	DV	LS	Path Vec
TCP/UDP & Port	U - 520	IP - 9	T - 89	T - 179
Classless	No	No	Yes	Yes
Updates	Per.	Per.	Both	Trig.
Load Balance	No	Yes	Yes	No
Internal / External	Int.	Int.	Int.	Ext.
Metric	Hop Count	Load Errors Delay Bdwth	Sum of Int. Cost	Short. AS Path

BGP

Operation Example

□ How BGP work

- The whole Internet is a graph of autonomous systems
- X→Z
 - > Original: X→A→B→C→Z
 - > X advertise this best path to his neighbor W
- W→Z
 - \succ W \rightarrow X \rightarrow A \rightarrow B \rightarrow C \rightarrow Z

BGP - Path Vector Protocol

https://nsrc.org/workshops/2016/senix-ixp/presentations/00-BGP-Introduction.pdf

BGP - **Definitions**

🗆 Transit

- carrying traffic across a network
- (Commercially: for a fee) but in Taiwan...

Peering

- exchanging routing information and traffic
- (Commercially: between similar sized networks, and for no fee) but in Taiwan...

🛛 Default

 where to send traffic when there is no explicit match in the routing table

BGP Peering and Transit example transit provider A Backbone provider E Provider C peering XP-West peering peering IXP-East Backbone provider B Provider D provider F

A and B peer for free, but need transit arrangements with C and D to get packets to/from E and F

transit

BGP – World Wide (1)

https://en.wikipedia.org/wiki/Tier_1_network

BGP – World Wide (2)

Default route

• End of full routing table

Full route

- Transit from other ISP / IXP
- 789K IPv4
- 58K IPv6

http://bgp.he.net/report/prefixes#_prefixes

BGP – Full Route

IPv4 Announced Prefix Count by CIDR and Growth over 1000 Days

CIDR:	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Count:	18	13	39	105	291	565	1,097	2,025	14,550	9,421	16,089	30,495	46,639	52,838	97,659	81,419	436,129
Change:	2	1	9	17	26	55	57	232	1,063	1,397	3,041	3,539	7,518	10,249	32,380	27,633	136,893
Percent:	12%	8%	30%	19%	9%	10%	5%	12%	7%	17%	23%	13%	19%	24%	49%	51%	45%

IPv6 Announced Prefix Count by CIDR and Growth over 1000 Days

CIDR:	16	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Count:	14	2	10	3	5	4	20	5	89	16	79	1,730	155	121	9,633
Change:	3	0	3	0	1	0	5	0	75	2	19	1,229	72	66	3,323
Percent:	27%	0%	42%	0%	25%	0%	33%	0%	535%	14%	31%	245%	86%	120%	52%

CIDR:	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Count:	631	420	363	1,528	217	674	216	2,392	210	394	73	2,728	181	1,770	550	21,408
Change:	393	259	161	720	165	505	146	1,465	122	252	41	1,834	88	1,452	395	11,938
Percent:	165%	160%	79%	89%	317%	298%	208%	158%	138%	177%	128%	205%	94%	456%	254%	126%

CIDR:	49	50	51	52	54	55	56	57	58	59	60	61	62	63	64
Count:	45	29	5	67	25	10	4,641	2	3	6	13	1	4	3	8,166
Change:	15	22	3	46	23	9	4,459	1	2	5	6	0	3	2	7,245
Percent:	50%	314%	150%	219%	1150%	900%	2450%	100%	200%	500%	85%	0%	300%	200%	786%

BGP Route Hijacking

Bad?Good?Neutral?

BGP Route Hijacking Howto

□ BGP normally

- Exchange "reachability" information between each other
- Advertises the block of addresses to neighboring BGP

IF someone

- Advertise the addresses that does not belong to you
- Your neighboring BGP announce to others
- BGP hijack explained
 - https://www.youtube.com/watch?v=9NBv7lKrG1A

BGP Route Hijacking

DDoS mitigation to clean center

BGP anycasting

• Like 168.95.1.1, 8.8.8.8, 8.8.4.4