

 Program is dead

› Just lie on disk

› grep is a program

 /usr/bin/grep

 $ file /usr/bin/grep

ELF 32-bit LSB executable …

 When you execute it

› It becomes a process

 Process is alive

› It resides in memory

 An address space in memory
› Code and data of this process

 A set of data structures within the kernel
› Used to monitor, schedule, trace, …., this process
 Owner, Group (Credentials)

 Current status

 VM space

 Execution priority (scheduling info)

 Information of used resource

 Resource limits

 Syscall vector

 Signal actions

 PID, PPID

› Process ID and parent process ID

 UID, EUID

› User ID and Effective user ID

 GID, EGID

› Group ID and Effective group ID

 Niceness

› The suggested priority of this process

 PID – process id
› Unique number assigned for each process in

increasing order when they are created
 PPID – parent PID

› The PID of the parent from which it was
cloned

› UNIX uses fork-and-exec model to create
new process

 UID, GID, EUID, EGID

› The effective uid and gid can be used to

enable or restrict the additional permissions

› Effective uid will be set to

 Real uid if setuid bit is off

 The file owner’s uid if setuid bit is on

Ex:

/etc/master.passwd is “root read-write only” and

/usr/bin/passwd is a “setuid root” program

lwbsd:~ -lwhsu- ls -al /etc/passwd /etc/master.passwd
-rw------- 1 root wheel - 1999 Sep 8 20:49 /etc/master.passwd
-rw-r--r-- 1 root wheel - 1727 Sep 8 20:49 /etc/passwd

lwbsd:~ -lwhsu- ls -al /usr/bin/passwd
-r-sr-xr-x 2 root wheel schg 8120 Sep 26 16:23 /usr/bin/passwd

 fork
› child has the same program context – fork(2)

 exec
› child use exec to change the program context –

execve(2)

 exit
› child use _exit to tell kernel that it is ready to die

and this death should be acknowledged by the
child’s parent – _exec(2)

 wait
› parent use wait to wait for child's death
› If parent died before child, this orphan process

will have init as it's new parent – wait(2)

 A way of telling a process something has happened

 Signals can be sent

› among processes as a means of communication

› by the terminal driver to kill, interrupt, or suspend process

 <Ctrl-C>、<Ctrl-Z>

› by the administrator to achieve various results

› by the kernel when a process violate the rules, such as divide

by zero

 Depend on whether there is a designated handler
routine for that signal

1. If yes, the handler is called

2. If no, the kernel takes some default action

 “Catching” the signal
› Specify a handler routine for a signal within a program

 Two ways to prevent signals from arriving
1. Ignored

– Just discard it and there is no effect to process

2. Blocked
– Queue for delivery until unblocked

– The handler for a newly unblocked signal is called only
once

Name Description Default Catch Block
Dump

core

1 SIGHUP Hangup Terminate

2 SIGINT Interrupt (^C) Terminate

3 SIGQUIT Quit Terminate

9 SIGKILL Kill Terminate

10 SIGBUS Bus error Terminate

11 SIGSEGV Segmentation fault Terminate

15 SIGTERM Soft. termination Terminate

17 SIGSTOP Stop Stop

18 SIGTSTP Stop from tty (^Z) Stop

19 SIGCONT Continue after stop Ignore

 signal(3)

 /usr/include/sys/signal.h

 Kill(1) --terminate or signal a process

 $ kill [-signal] pid

› Ex:

 First, find out the pid you want to kill

(ps, top, sockstat, lsof…)

 % kill –l (list all available signals)

 % kill 49222

 % kill –TERM 49222

 % kill –15 49222

› killall(1)

 kill processes by name

 man ps and see “state” keyword

State Meaning

I Idle

R Runnable

S Sleeping

T Stopped

Z Zombie

D in Disk wait

 How kindly of you when contending
CPU time
› High nice value  low priority

 Inherent Property
› A newly created process inherits the

nice value of its parent
 Prevent processes with low priority from

bearing high-priority children

 Root has complete freedom in
setting nice value
› Use nice to start a high-priority shell to

beat berserk process

System Nice. Range OS nice csh nice renice

FreeBSD -20 ~ 20 -incr | -n incr +prio | -prio prio | -n incr

Red Hat -20 ~ 20 -incr | -n incr +prio | -prio prio

Solaris 0 ~ 39 -incr | -n incr +incr | -incr prio | -n incr

SunOS -20 ~ 19 -incr +prio | -prio prio

 nice format
› OS nice : % /usr/bin/nice [range] utility [argument]

› csh nice : % nice [range] utility [argument]

 % nice +10 ps -l

 renice format
› % renice [prio | -n incr] [–p pid] [–g gid] [-u user]

 % renice 15 –u lwhsu

 ps

 ps aux

 ps auxww

lwbsd:~ -lwhsu- ps
PID TT STAT TIME COMMAND

68272 0 Ss+ 0:00.05 -tcsh (tcsh)
54245 3 R+ 0:00.00 ps

lucky7:~ -lwhsu- ps aux
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 10 100.0 0.0 0 16 ?? RL Sat03PM 4724:11.63 [idle: cpu1]
root 11 96.5 0.0 0 16 ?? RL Sat03PM 4728:04.35 [idle: cpu0]
cvsup 63790 0.4 0.1 9056 4764 ?? S 2:59AM 0:14.86 /usr/local/sbin/cvsupd -e -C
16 -l @daemon -b /usr/local/etc/
lwhsu 65013 0.4 0.1 11080 4176 p4 Ds 3:19AM 0:00.19 -tcsh (tcsh)
(...)

lucky7:~ -lwhsu- ps auxww | head
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 11 89.7 0.0 0 16 ?? RL Sat03PM 4730:25.76 [idle: cpu0]
root 10 83.7 0.0 0 16 ?? RL Sat03PM 4726:29.66 [idle: cpu1]
cvsup 65024 28.8 0.1 8212 4052 ?? R 3:20AM 0:17.07 /usr/local/sbin/cvsupd -e -C
16 -l @daemon -b /usr/local/etc/cvsup -s sup.client
cvsup 63790 1.4 0.1 9056 4764 ?? D 2:59AM 0:16.87 /usr/local/sbin/cvsupd -e -C
16 -l @daemon -b /usr/local/etc/cvsup -s sup.client
(...)

 ps –j

 ps –o

 ps -L

lucky7:~ -lwhsu- ps -j
USER PID PPID PGID SID JOBC STAT TT TIME COMMAND
lwhsu 28905 28903 28905 28905 0 Is+ p0 0:00.16 -tcsh (tcsh)
lwhsu 65063 65013 65063 65013 1 R+ p4 0:00.00 ps -j

lucky7:~ -lwhsu- ps -o uid,pid,ppid,%cpu,%mem,command
UID PID PPID %CPU %MEM COMMAND

1000 28905 28903 0.0 0.0 -tcsh (tcsh)
1000 30617 30615 0.0 0.0 -tcsh (tcsh)
1000 65066 65013 0.0 0.0 ps -o uid,pid,ppid,%cpu,%mem,command

lucky7:~ -lwhsu- ps -L
%cpu %mem acflag acflg args blocked caught comm command cpu cputime emul
etime f flags ignored inblk inblock jid jobc ktrace label lim lockname
login logname lstart lwp majflt minflt msgrcv msgsnd mwchan ni nice
nivcsw nlwp nsignals nsigs nswap nvcsw nwchan oublk oublock paddr pagein
pcpu pending pgid pid pmem ppid pri re rgid rgroup rss rtprio ruid ruser
sid sig sigcatch sigignore sigmask sl start stat state svgid svuid tdev
time tpgid tsid tsiz tt tty ucomm uid upr uprocp user usrpri vsize vsz
wchan xstat

Use these options with shell scripts

 Various usage

› top –q run top and renice it to -20

› top –u don’t map uid to username

› top –Uusername show process owned by user

› top –S Show system processes in the display

 Interactive command

› o change display order (cpu, res, size, time)

› u show only processes owned by user (“+” means all)

› ? Listing available options

last pid: 52477; load averages: 0.01, 0.05, 0.02 up 0+19:38:37
17:23:38
29 processes: 1 running, 28 sleeping
CPU states: 0.4% user, 0.0% nice, 0.0% system, 0.0% interrupt, 99.6% idle
Mem: 19M Active, 308M Inact, 113M Wired, 88K Cache, 111M Buf, 556M Free
Swap: 1024M Total, 1024M Free

PID USERNAME THR PRI NICE SIZE RES STATE TIME WCPU COMMAND
697 root 1 76 0 3784K 2728K select 0:02 0.00% sshd
565 root 1 76 0 1468K 1068K select 0:00 0.00% syslogd
704 root 1 8 0 1484K 1168K nanslp 0:00 0.00% cron

 Processes that use up excessive system

resource or just go berserk

› kill –STOP for unknown process

› renice it to a higher nice value for
reasonable process

