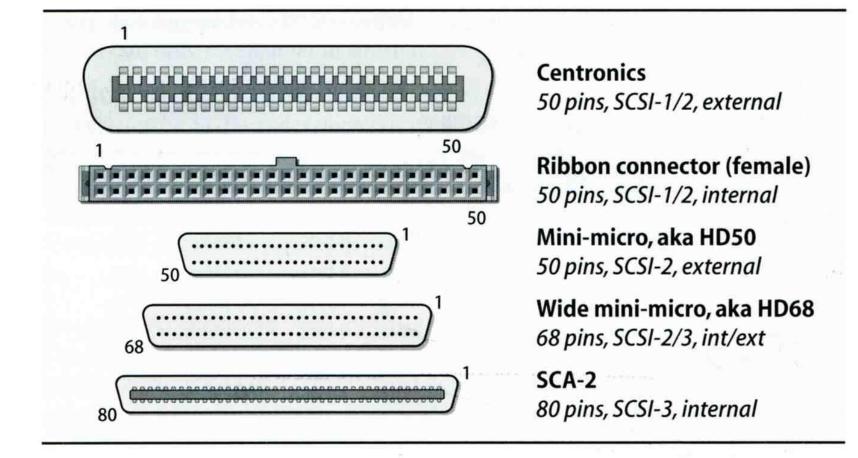
Chapter 8 Adding a Disk

Disk Interface


SCSI

- > Small Computer Systems Interface
- > High performance and reliability
- IDE (or ATA)
 - > Integrated Device Electronics (or AT Attachment)
 - > Low cost
 - > Become acceptable for enterprise with the help of RAID technology
- SATA
 - > Serial ATA
- SAS
 - Serial Attached SCSI
- USB
 - > Universal Serial Bus
 - > Convenient to use

Disk Interface – SCSI Interface Evolution

Version	Freq.	Width	Speed	Length	Diff.
SCSI-1	5MHz	8 bits	5MB/s	6m	25m
SCSI-2	5MHz	8 bits	5MB/s	6m	25m
SCSI-2 Fast	10MHz	8 bits	10MB/s	3m	25m
SCSI-2 Fast Wide	10MHz	16 bits	20MB/s	3m	25m
Ultra SCSI	20MHz	8 bits	20MB/s	1.5m	25m
Ultra Wide SCSI	20MHz	16 bits	40MB/s	1.5m	25m
Ultra2 SCSI	40MHz	16 bits	80MB/s	-	12m
Ultra160 SCSI	80MHz	16 bits	160MB/s	-	12m
Ultra320 SCSI	160MHz	16 bits	320MB/s	-	12m

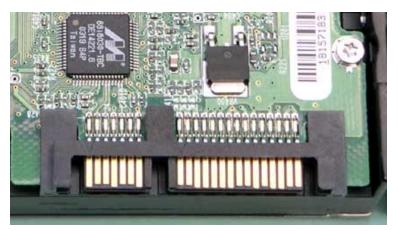
Disk Interface – SCSI Interface Connector

Disk Interface – SCSI Interface

Daisy chain on SCSI bus

- Most external devices have two SCSI ports
- > Terminator
- Each SCSI device has a SCSI ID

Disk Interface – ATA & SATA


- ATA (AT Attachment)
 - > ATA2
 - PIO, DMA
 - LBA (Logical Block Addressing)
 - ATA3, Ultra DMA/33/66/100/133
 - > ATAPI (ATA Packet Interface)
 - CDROM, TAP
 - > Only one device can be active at a time
 - SCSI support overlapping commands, command queuing, scattergather I/O
 - > Master-Slave
 - > 40-pin ribbon cable
- SATA
 - > Serial ATA

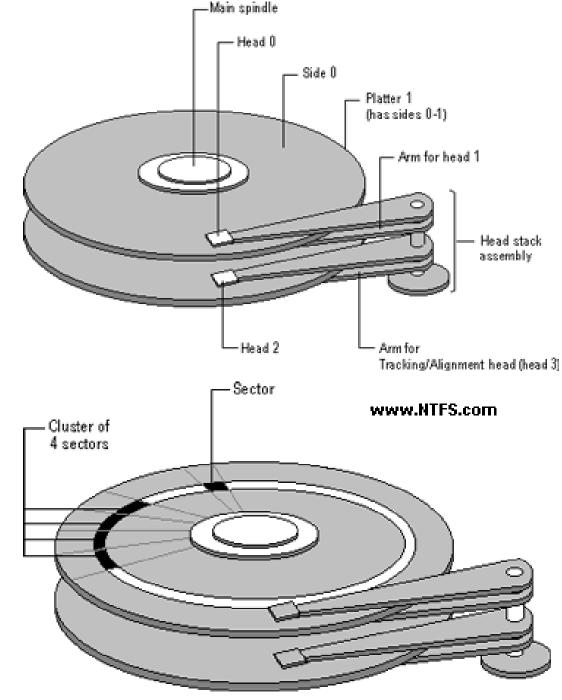
Disk Interface – ATA & SATA Interface • ATA interface and it's cable

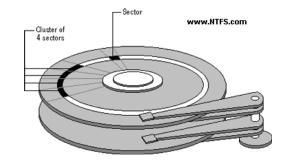
SATA interface and it's cable

Disk Interface – SAS

- SAS Serial Attached SCSI
- SAS vs parallel SCSI
 - > Serial transfer protocol to interface multiple devices
 - lesser signaling overhead
 - higher speed
 - > Point-to-point
 - No bus contention
 - SCSI is multidrop
 - > No termination
 - does not require terminator
 - > Eliminates skew
 - Supports higher number of devices (> 16384)
 - SCSI limits it to 16 or 32
 - > Supports higher transfer speed (1.5, 3.0 or 6.0 Gbps)
 - SCSI the speed is shared across the entire multidrop bus
 - > Supports SATA devices
 - > Uses SCSI commands to interface with SAS End devices

Disk Interface – USB


• USB to IDE/SATA Converter



Disk Geometry (1)

- Sector
 - > Individual data block
- Track
 - > circle
- Ovlinder
 - > circle on all platters
- Position
 - > CHS
 - > Cylinder, Head, Sector

Disk Geometry (2)

- 40G HD
 - > 4866 cylinders, 255 heads
 - > 63 sectors per track, 512 bytes per sector
 - > 512 * 63 * 4866 * 255 = 40,024,212,480 bytes
 - > 1KB = 1024 bytes
 - > 1MB = 1024 KB = 1,048,576 bytes
 - > 1GB = 1024 MB = 1,073,741,824 bytes
 - > 42,278,584,320 / 1,073,741,824 ≒ 39.375 GB

Disk Installation Procedure (1)

- The procedure involves the following steps:
 - > Connecting the disk to the computer
 - IDE: master/slave
 - SCSI: ID, terminator
 - power
 - > Creating device files
 - /dev
 - Now auto created by devfs devfs(5,8)
 - > Formatting the disk
 - Low-level format
 - Address information and timing marks on platters
 - bad sectors
 - Manufacturer diagnostic utility

Disk Installation Procedure (2)

- > Partitioning and Labeling the disk
 - Allow the disk to be treated as a group of independent data area
 - root, home, swap partitions
 - Suggestion:
 - /var, /tmp \rightarrow separate partition
 - Make a copy of root filesystem for emergency
- > Establishing logical volumes
 - Combine multiple partitions into a logical volume

geom(4)

- Software RAID technology
 - FreeBSD (GEOM)
 - Linux (Linux LVM)
 - Sun (Solstice Disk Suite, ZFS)

Disk Installation Procedure (3)

- Creating UNIX filesystems within disk partitions
 - Use "newfs" to install a filesystem for a partition

newfs(8)

- Filesystem components
 - A set of inode storage cells
 - A set of data blocks
 - A set of superblocks
 - A map of the disk blocks in the filesystem
 - A block usage summary

Disk Installation Procedure (4)

Superblock contents

- The length of a disk block
- Inode table's size and location
- Disk block map
- Usage information
- Other filesystem's parameters

i in the synce of the synce of

- The sync() system call forces a write of dirty (modified) buffers in the block buffer cache out to disk.
- The sync utility can be called to ensure that all disk writes have been completed before the processor is halted in a way not suitably done by reboot(8) or halt(8).

sync(2,8)

Disk Installation Procedure (5)

- > mount
 - Bring the new partition to the filesystem tree
 - mount point can be any directory
 - # mount /dev/ad1s1e /home2
- > Setting up automatic mounting
 - Automount at boot time
 - /etc/fstab
 - % mount –t ufs /dev/ad2s1a /backup
 - % mount -t cd9600 -o ro,noauto /dev/acd0c /cdrom

sabsd:~ -lwhsu-	cat /etc/fstab					
# Device	Mountpoint		FStype	Options	Dump	Pass#
/dev/ad0s1b	none		swap	SW	0	Θ
/dev/ad2s1b	none		swap	SW	Θ	Θ
/dev/ad0s1a	/		ufs	rw	1	1
/dev/acd0c	/cdrom		cd9660	ro,noauto	Θ	Θ
proc	/proc		procfs	rw	0	Θ
/dev/ad2s1a	/backup		ufs	rw,noauto	1	1
ccduty:/bsdhome	/bsdhome	nfs	rw,noau	to O	0	

Disk Installation Procedure (6)

- > Setting up swapping on swap partitions
 - swapon command
 - swapon, swapoff, swapctl

swapon(8)

fsck – check and repair filesystem (1)

- System crash will cause
 - Inconsistency between memory image and disk contents
- fsck
 - > Examine all local filesystem listed in /etc/fstab at boot time
 - > Automatically correct the following damages:
 - Unreferenced inodes
 - Inexplicably large link counts
 - Unused data blocks not recorded in block maps
 - Data blocks listed as free but used in file
 - Incorrect summary information in the superblock

fsck(8) fsck_ffs(8)

fsck – check and repair filesystem (2)

- Run fsck in manual to fix serious damages
 - > Blocks claimed by more than one file
 - > Blocks claimed outside the range of the filesystem
 - > Link counts that are too small
 - > Blocks that are not accounted for
 - > Directories that refer to unallocated inodes
 - > Other errors
- fsck will suggest you the action to perform
 - > Delete, repair, ...

Adding a disk to FreeBSD (1)

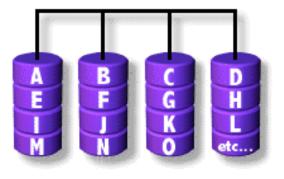
- Check disk connection
 - > Look system boot message
 - /var/run/dmesg.boot

ad1: 238475MB <Hitachi HDT725025VLA380 IBM V5D0A7CA> at ata0-slave SATA150

- 2. Use /stand/sysinstall to install the new HD
 - Configure \rightarrow Fdisk
 - \rightarrow Label
 - > Don't forget to "W" the actions
 - > (Easiest, but has some problems)
 - > fdisk(8), bsdlabel(8), newfs(8)
- 3. Make mount point and mount it
 - > # mkdir /home2
 - # mount -t ufs /dev/adlsle /home2
 - > # df (checking)
- 4. Edit /etc/fstab

Adding a disk to FreeBSD (2)

- If you forget to enable soft-update when you add the disk
 - > # umount /home2
 - > # tunefs —n enable /dev/ad1s1e
 - > # mount -t ufs /dev/ad3s1e /home2
 - > # mount

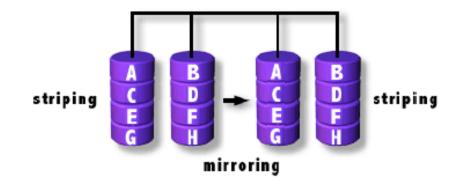

```
/dev/ad0s1a on / (ufs, local, soft-updates)
devfs on /dev (devfs, local)
procfs on /proc (procfs, local)
/dev/ad1s1e on /home2 (ufs, local, soft-updates)
```

RAID (1/2)

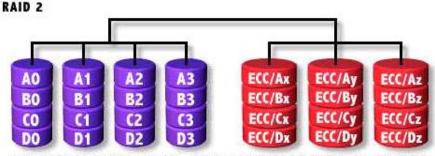
- Redundant Array of Inexpensive Disks
 - A method to combine several physical hard drives into one logical unit
- Depending on the type of RAID, it has the following benefits:
 - > Fault tolerance
 - > Higher throughput
 - > Real-time data recovery
- RAID Level
 - RAID 0, 1, 0+1, 2, 3, 4, 5, 6
 - > Hierarchical RAID

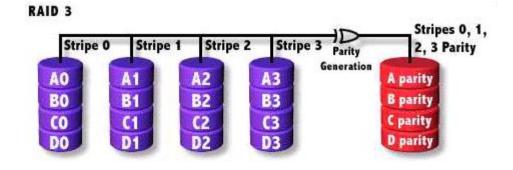
RAID (2/2)

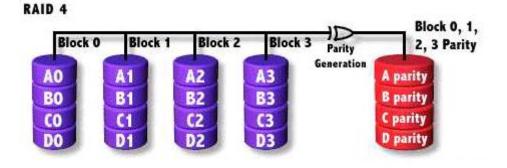
- In Hardware RAID
 - There is a dedicate controller to take over the whole business
 - RAID Configuration Utility after BIOS
 - Create RAID array, build Array
- Software RAID
 - FreeBSD (GEOM)
 - Linux (Linux LVM)
 - Sun (Solstice Disk Suite)



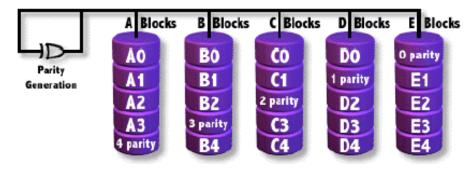
- Stripped data intro several disks
- Minimum number of drives: 2
- Advantage
 - > Performance increase in proportional to n theoretically
 - > Simple to implement
- Disadvantage
 - > No fault tolerance
- Recommended applications
 - > Non-critical data storage
 - Application requiring high bandwidth (such as video editing)

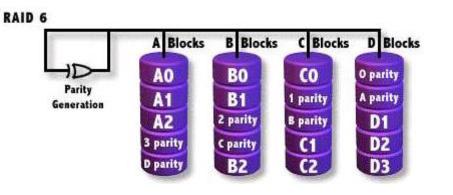

- Mirror data into several disks
- Minimum number of drives: 2
- Advantage
 - > 100% redundancy of data
- Disadvantage
 - > 100% storage overage
 - > Moderately slower write performance
- Recommended application
 - > Application requiring very high availability (such as home)


Combine RAID 0 and RAID 1 Minimum number of drives: 4


A0 to A3=Word A; B0 to B3 = Word B; C0 to C3=Word C; D0 to D3 = Word D

ECC/Ax to Az=Word A ECC; ECC/Bx to Bz = Word B ECC; ECC/Cx to Cz=Word C ECC; ECC/Dx to Dz = Word D ECC


- Item Hamming Code ECC Each bit of data word
- Advantages:
 - > "On the fly" data error correction
- Disadvantages:
 - > Inefficient
 - > Very high ratio of ECC disks to data disks
- Recommended Application
 - No commercial implementations exist / not commercially viable


- Parallel transfer with Parity
- Minimum number of drives: 3
- Advantages:
 - > Very high data transfer rate
- Disadvantages:
 - Transaction rate equal to that of a single disk drive at best
- Recommended Application
 - > Any application requiring high throughput

- Similar to RAID3
- RAID 3 V.S RAID 4
 - » Byte Level V.S Block Level
 - > Block interleaving

- Independent Disk with distributed parity blocks
- Minimum number of drives: 3
- Advantage
 - > Highest read data rate
 - > Medium write data rate
- Disadvantage
 - > Disk failure has a medium impact on throughput
 - > Complex controller design
 - > When one disk failed, you have to rebuild the RAID array
 - > "write hole"

Similar to RAID5

- Minimum number of drives: 4
- 2 parity checks, 2 disk failures tolerable.