Disks

Outline

- ☐ Interfaces
- ☐ Geometry
- ☐ Add new disks
 - Installation procedure
 - Filesystem check
 - Add a disk using sysinstall
- ☐ RAID
 - GEOM
- ☐ Appendix SCSI & SAS

Disk Interfaces

☐ SCSI

- Expensive!
- Small Computer Systems Interface
- SCSI Card ~ 10k
- <u>High performance</u> and <u>reliability</u>
- \Box IDE (or ATA)

Low Price!

- Integrated Device Electronics (or AT Attachment)
- Low cost
- Become acceptable for enterprise with the help of RAID technology
- **SATA**

Enhancement

- Serial ATA
- \Box SAS
 - Serial Attached SCSI

Speeds up!

- ☐ USB
 - Universal Serial Bus
 - Convenient to use

Disk Interfaces – ATA & SATA

- ☐ ATA (AT Attachment)
 - ATA2
 - ➤ PIO, DMA
 - ➤ LBA (Logical Block Addressing)
 - ATA3, Ultra DMA/33/66/100/133
 - ATAPI (ATA Packet Interface)
 - > CDROM, TAPE
 - Only one device can be active at a time
 - > SCSI support overlapping commands, command queuing, scatter-gather I/O
 - Master-Slave

Primary Master (0)/Slave(1)

• 40-pin ribbon cable

Secondary Master(2)/Slave(3)

\Box SATA

- Serial ATA
- SATA-1 1.5Gbit/s, SATA-2 3Gbit/s, SATA-3 6GBit/s

Disk Interfaces – ATA & SATA Interfaces

☐ ATA interface and it's cable

Power

Disk Interfaces – USB

☐ IDE/SATA to USB Converters

Disk Geometry (1)

- sector
 - Individual data block
- □ track
 - <u>circle</u>
- ☐ cylinder
 - circle on all platters
- Position
 - CHS:
 Cylinder,
 Head (0, 1, ...),
 Sector

Disk Geometry (2)

40G HD

- 4866 cylinders, 255 heads
- 63 sectors per track, 512 bytes per sector
- 512 * 63 * 4866 * 255 = 40,024,212,480 bytes

G M K

- 1KB = 1024 bytes
- 1MB = 1024 KB = 1,048,576 bytes
- 1GB = 1024 MB = 1,073,741,824bytes

• 40,024,212,480 / 1,073,741,824 = 37.275 GB

10³ vs. 2¹⁰...

Disk Installation Procedure (in BSD...)

Disk Installation Procedure (1)

- ☐ The procedure involves the following steps:
 - Connecting the disk to the computer
 - ➤ IDE: master/slave
 - > SATA
 - > SCSI: ID, terminator
 - > power
 - Creating device files
 - Auto created by <u>devfs</u>

Please do it offline...

- Formatting the disk
 - > Low-level format
 - Manufacturer diagnostic utility
 - Kill all address information and timing marks on platters
 - Repair bad sectors → mark the bad sectors and don't use them!

vs. fast format (data only)

Disk Installation Procedure (2)

- Partitioning and Labeling the disk
 - > Allow the disk to be treated as a group of <u>independent data</u> area
 - > e.g. root, home, swap partitions
 - > Former Suggestions:
 - /var, /tmp → separate partition (for backup issue)
 - Make a copy of root filesystem for emergency
- Establishing logical volumes
 - **Combine multiple partitions into a logical volume**
 - Related to RAID
 - > Software RAID technology
 - **GEOM:** geom(4) ⋅ geom(8)
 - ZFS: zpool(8) \(zfs(8) \) \(zdb(8) \)

Disk Installation Procedure (3)

- Creating UNIX filesystems within disk partitions
 - ➤ Use "newfs" to install a filesystem for a partition
 - > Establish all filesystem components
 - A set of inode storage cells
 - A set of data blocks
 - A set of superblocks
 - A map of the disk blocks in the filesystem
 - A block usage summary

Disk Installation Procedure (4)

> Superblock contents

Software info.

- The <u>length</u> of a disk block
- Inode table's size and location
- Disk block map
- Usage information
- Other filesystem's parameters

SoftUpdate

> sync

- The *sync() system call* forces a write of dirty (modified) buffers in the block buffer cache out to disk.
- The *sync utility* can be called to <u>ensure that all disk writes have</u> been completed before the processor is halted in a way not suitably done by reboot(8) or halt(8).

done automatically nowadays~ ©

Disk Installation Procedure (5)

- mount
 - > Bring the new partition to the filesystem tree
 - > mount point can be <u>any directory (empty)</u>
 - # mount /dev/ad1s1e /home2
- Setting up automatic mounting
 - > Automount at boot time

Mount CD Also for ISO img. file /etc/fstab
% mount –t ufs /dev/ad2s1a /backup

% mount -t cd9600 -o ro,noauto /dev/acd0c /cdrom

Usually: 2, 1 for root; No write = 0

	liuyh@NASA:/etc> cat fstab					
;	# Device	Mountpoint	Fstype	Options	Dump	Pass#
,	/dev/ad0s1b	none	swap	SW	0	0
,	/dev/ad2s1b	none	swap	SW	0	0
,	/dev/ad0s1a	/	ufs	rw	1	1
,	/dev/acd0	/cdrom	cd9660	ro,noauto	0	0
	/dev/ad2s1a	/backup	ufs	rw,noauto	2	2
	csduty:/bsdhome	/bsdhome	nfs	rw,noauto	0	0

Disk Installation Procedure (6)

- Setting up swapping on swap partitions
 - > swapon, swapoff, swapctl
 - > swapinfo, pstat

e.g. swapon –a // mount all partitions for swap usage

```
pml1@bsd5 |~|
                1K-blocks
                               Used
                                       Avail Capacity
Device
/dev/label/swap-0 1048572
                                60372
                                        988200
                                                    6%
/dev/label/swap-1
                                59808
                                        988764
                    1048572
                             120180 1976964
                  2097144
Total
                                                  6%
17:05 pmli@bsd5 [~]
```

fsck – check and repair filesystem (1)

- ☐ System crash will cause
 - Inconsistency between <u>memory image</u> and <u>disk contents</u>
- ☐ fsck
 - Examine all local <u>filesystem listed in /etc/fstab</u> at boot time. (fsck -p)
 - Automatically correct the following damages:

auto. Do it at boot time

- Unreferenced inodes
- Inexplicably large link counts
- Unused data blocks not recorded in block maps
- > Data blocks listed as free but used in file
- Incorrect summary information in the superblock
- \triangleright fsck(8) \cdot fsck ffs(8)
- > ffsinfo(8): dump metadata

check if filesys. is clean...
0 dirty (rw) 1 clean (ro)

fsck -

check and repair filesystem (2)

- ☐ Run fsck in manual to fix serious damages
- No guarantee on fully recover you HD...

- Blocks claimed by more than one file
- Blocks claimed outside the range of the filesystem
- Link counts that are too small
- Blocks that are not accounted for
- Directories that refer to unallocated inodes
- Other errors
- ☐ fsck will suggest you the action to perform
 - Delete, repair, ...

Adding a disk to FreeBSD (1)

- 1. Check disk connection
 - > Look system boot message

ad3: 238475MB < Hitachi HDS722525VLAT80 V36OA6MA > at ata1-slave UDMA100

Line, speed

- 2. Use /usr/sbin/sysinstall to install the new HD
 - > Configure → Fdisk → Label
 - > Don't forget to "W" the actions
 - > Easiest approach, but has some problems.
 - > fdisk(8), bsdlabel(8), newfs(8)
- 3. Make mount point and mount it
 - > # mkdir /home2
 - > # mount –t ufs /dev/ad3s1e /home2
 - > # df
- 4. Edit /etc/fstab

Adding a disk to FreeBSD (2)

- ☐ If you forget to enable soft-update when you add the disk
 - % umount /home2
 - % tunefs –n enable /dev/ad3s1e
 - % mount –t ufs /dev/ad3s1e /home2
 - % mount

/dev/ad0s1a on / (ufs, local, soft-updates)
/dev/ad1s1e on /home (ufs, local, soft-updates)
procfs on /proc (procfs, local)
/dev/ad3s1e on /home2 (ufs, local, soft-updates)

RAID - (1)

- RAID0

- RAID0

- HD - HD

- HD

- HD

- HD - HD

- ☐ Redundant Array of <u>Inexpensive Disks</u>
 - A method to <u>combine several physical hard drives into one logical</u>
 <u>unit</u>
 e.g. HD1, HD2 → D:\ in windows
- ☐ Depending on the type of RAID, it has the following benefits:
 - Fault tolerance
 - Higher throughput
 - Real-time data recovery
- ☐ RAID Level
 - RAID 0, 1, 0+1, 2, 3, 4, 5, 6
 - Hierarchical RAID

RAID - (2)

- ☐ Hardware RAID
 - There is a dedicate controller to take over the whole business
 - RAID Configuration Utility after BIOS
 - Create RAID array, build Array
- ☐ Software RAID
 - > GEOM
 - CACHE · CONCAT · ELI · JOURNAL · LABEL · MIRROR · MULTIPATH · NOP · PART · RAID3 · SHSEC · STRIPE · VIRSTOR
 - > ZFS
 - JBOD · STRIPE
 - MIRROR
 - RAID-Z · RAID-Z2 · RAID-Z3

(normally used)

(500GB+500GB=1TB)

- Stripped data intro several disks
- ☐ Minimum number of drives: 2
- ☐ Advantage
 - Performance increase in proportional to n theoretically
 - Simple to implement

parallel file io from/to different HDs

e.g. HD1 (500GB), HD2 (500GB)

→ D:\ in windows (1TB)

- ☐ Disadvantage
 - No fault tolerance
- ☐ Recommended applications
 - Non-critical data storage
 - Application requiring high bandwidth (such as video editing)

(normally used)

(500GB+500GB=500B)

- ☐ Mirror data into several disks
- ☐ Minimum number of drives: 2
- ☐ Advantage
 - 100% redundancy of data
- Disadvantage
 - 100% storage overage
 - Moderately slower write performance
- ☐ Recommended application Cause by double check mechanisms on data...
 - Application requiring very high availability (such as home)

RAID 0+1

(normally used)

[(500GB+500GB)+(500GB+500GB)]=1TB)

- ☐ Combine RAID 0 and RAID 1
- ☐ Minimum number of drives: 4

RAID1, RAID1 Them RAID0 above it

- ☐ Hamming Code ECC Each bit of data word
- ☐ Advantages:

Read, check if correct, then read

- "On the fly" data error correction
- ☐ Disadvantages:
 - Inefficient
 - Very high ratio of ECC disks to data disks
- ☐ Recommended Application
 - No commercial implementations exist / not commercially viable

RAID1 if two HDs

Save parity

- ☐ Parallel transfer with Parity
- ☐ Minimum number of drives: 3
- ☐ Advantages:
 - Very high data transfer rate
- ☐ Disadvantages:
 - Transaction rate equal to that of a single disk drive at best
- ☐ Recommended Application
 - Any application requiring <u>high throughput</u>

- ☐ Similar to RAID3
- □ RAID 3 V.S RAID 4
 - Byte Level V.S Block Level
 - Block interleaving

Block normally 512bytes (4k for WD HDs)

➤ Small files (e.g. 4k)

RAID 5 (normally used)

- ☐ Independent Disk with distributed parity blocks
- ☐ Minimum number of drives: 3

Origin from RAID3

- ☐ Advantage Parallel file I/O
 - Highest read data rate
 - Medium write data rate
- ☐ Disadvantage
 - Disk failure has a medium impact on throughput
 - Complex controller design
 - When one disk failed, you have to rebuild the RAID array

Can tolerate only 1 HD failure

RAID 6 (normally used)

- ☐ Similar to RAID5
- ☐ Minimum number of drives: 4
- □ 2 parity checks, 2 disk failures tolerable.

Slower than RAID5 because of storing 2 parities...

GEOM

Modular Disk Transformation Framework

GEOM - (1)

- ☐ Support
 - ELI geli(8): <u>cryptographic</u> GEOM class
 - JOURNAL gjournal(8): <u>journaled</u> devices <u>Journalize</u> (logs) before write
 - LABEL glabel(8): disk <u>labelization</u>
 - MIRROR gmirror(8): mirrored devices
 - STRIPE gstripe(8): striped devices Software RAID1
 - Software RAID0

http://www.freebsd.org/doc/handbook/geom.html

GEOM - (2)

- ☐ GEOM framework in FreeBSD
 - Major RAID control utilities
 - Kernel modules (/boot/kernel/geom *)
 - Name and Prodivers ← devices

Logical > "manual" or "automatic"

volumes Metadata in the last sector of the providers

☐ Kernel support

- (1) On demand load/unload kernel modules..
- {glabel,gmirror,gstripe,g*} load/unload
 - (2) Build-in kernel and recompile device GEOM * in kernel config
 - > geom * enable="YES" in /boot/loader.conf
 - (3) load automatically at booting

GEOM - (3)

Why us it? → bundle by name instead of bundle by provider J LABEL

- Used for GEOM provider labelization.
- Kernel
 - ➤ device GEOM LABEL
 - > geom label load="YES"
- glabel (for new storage)
 - > # glabel label -v usr da2
 - > # newfs /dev/label/usr
 - > # mount /dev/label/usr /usr
 - > # glabel stop usr
 - > # glabel clear da2
- Stop using the name
 - Clear metadata on provider

Label → auto, at boot

/dev/label/usr

>> Create → only this time

- UFS label (for an using storage)
 - > # tunefs -L data /dev/da4s1a
 - > # mount /dev/ufs/data /mnt/data

"data" is a name

e.g. ad0s1d \rightarrow usr

GEOM - (4)

□ MIRROR

- Used for GEOM provider labelization.
- Kernel
 - ➤ device GEOM MIRROR
 - > geom mirror load="YES"
- Weight Using gmirror for building up RAID1 gmirror
 - > # gmirror label -v -b round-robin data da0
 - > # newfs /dev/mirror/data logical volume called "data",
 - # mount /dev/mirror/data /mnt
 - > # gmirror insert data da1 Add in HD
 - > # gmirror forget data
 - > # gmirror insert data da1
 - > # gmirror stop data
 - > # gmirror clear da0

Kill inexist HDs

using HD: da0, ...

GEOM - (5)

☐ STRIPE

- Used for GEOM provider labelization.
- Kernel
 - ➤ device GEOM STRIPE
 - > geom stripe load="YES"
- gstripe
 - > # gstripe label -v -s 131072 data da0 da1 da2 da3

Create logical volume "data",

which stripe da0~da3 HDs

- > # newfs /dev/stripe/data
- > # mount /dev/stripe/data /mnt
- > # gstripe stop data
- > # gstripe clear da0