git and version control

ymli

CSCC System Admin 2014

Where programmers learn from the masters

1/58

https://github.com/

About me

e Your TA

2 /58

Introduction

e source code management (SCM)
o why do you need that?

 history
o Linus Torvalds wanted his own SCM system for the Linux kernel
o git as "the stupid content tracker"

» British English slang roughly equivalent to "unpleasant
person"

http://git-scm.com/book/en/Getting-Started-A-Short-History-of-Git

3/58

http://git-scm.com/book/en/Getting-Started-A-Short-History-of-Git

Write my own
BitKeeper

» BitKeeper is a proprietary SCM system, non-free!
e The new SCM should support a distributed, BitKeeper-like workflow

e Performance is No. 1

4 /58

Write my own
BitKeeper

I'm an egotistical bastard, and | name all my
projects after myself. First Linux, now git.

(Linus Torvalds)

izquotes.com

image src: http://akifrases.com/frase/132446

5/58

http://akifrases.com/frase/132446

Characteristics

git iS A RN

distributed

o not dependent on network access or central servers
o everyone can have a copy of the whole repository
o everything can be done offline before push

non-linear development

o collaborative project
o Linux kernel: averaging ~70 commits per day

efficiency

o check hash (SHA-1) and diff instead of comparing the whole
contents
o much like a file system

very lightweight branch

6/58

Getting started

7/58

The three states

Local Operations

working staging
directory area

http://git-scm.com/book/en/Getting-Started-Git-Basics#The-Three-States 38/ 58

http://git-scm.com/book/en/Getting-Started-Git-Basics#The-Three-States

First Steps

git init

git clone

git config

image src: http://www.healthtipsplace.com/baby.html

9/58

http://www.healthtipsplace.com/baby.html

First Steps

« create your own project

$ mkdir demo

$ demo
$ git init

e clone from other's repo

$ git clone git://git.kernel.org/pub/scm/git/git.git

» configure your user info.

$ git config --global user.name "xatierlike Lee"
$ git config --global user.email xatierlike@gmail.com

10 /58

http://git-scm.com/book/en/Getting-Started-First-Time-Git-Setup

git init

$ mkdir demo

$ demo/

$ git init
Initialized empty Git repository /Users/xatier/tmp/demo/.git/

» create needed files under the .git directory
e you can take a look inside .git/ :)

http://git-scm.com/book/en/Git-Basics-Getting-a-Git-Repositor

11/58

http://git-scm.com/book/en/Git-Basics-Getting-a-Git-Repository

git clone

» clone the whole repository from a url
» get a local copy of a Git repository

$ git clone git://git.kernel.org/pub/scm/git/git.git
Cloning into 'git'...
remote: Counting objects: , done.

remote: Compressing objects: % (/), done.

remote: Total (delta), reused (delta)
Receiving objects: % (), MiB | MiB/s, done.
Resolving deltas: % (), done.

» different protocols

clone file:///opt/git/project.git

clone ssh://user@server/project.git
clone user@server:project.git

clone http://example.com/gitproject.git

12 /58
htto://ait-scm.com/book/en/Git-on-the-Server-The-Protocols

http://git-scm.com/book/en/Git-on-the-Server-The-Protocols

git config

» who you are & how to contact you
e you are responsible for your code!

$ git config --global user.name "xatierlike Lee"

$ git config --global user.email xatierlike@gmail.com

e --global configurations will be stored here

$ cat ~/.gitconfig
Luser]

name = xatierlike Lee
email = xatierlike@gmail.com

http://git-scm.com/book/en/Customizing-Git-Git-Configuration

13 /58

http://git-scm.com/book/en/Customizing-Git-Git-Configuration

Three useful commands

» show the working tree status

$ git status

» show changes between commits, commit and working tree, etc

$ git diff

e show commit logs

$ git log

Use them often whenever you're not
really sure what's going on!

14 /58

git status

» show the working tree status
e use this often!!!!

o aftergit init

$ git status

nothing to commit (create/copy files and use "git add” to track)

* you have an empty git repository now, try to create some interesting
stuffs!

http://git-scm.com/book/en/Git-Basics-Recording-Changes-to-the-
Repository

15/58

http://git-scm.com/book/en/Git-Basics-Recording-Changes-to-the-Repository

git status

» create an empty file

$ touch foo

$ git status

nothing added to commit but untracked files present (use "git add” to track)

» okay, now you have a file in your repo, but git doesn't know anything
about that file yet

o tell git to track the content of the file

16 /58

git add

» add some changes to the staging area

o tell git to track the new added files

$ git add foo

$ git status

* NOow you have a new tracked file in the staging area

17 /58

git diff
* Show changes between commits, commit and working tree, etc

e now, write some data to foo

$ "foo" > foo

$ git diff

diff --git a/foo b/foo
index e69de29.. cch6
--- a/foo

+++ b/foo

@@ -0,0 +1 @@

+f00

(END)

Note: Is there any changes to the .git directory?

18 /58

git commit

e do the commit

$ git commit

e this command will open your $EDITOR

create the file 'foo’

9/58

git commit

e a brief summary of your commit

o file changed
o insertions
o deletions

$ git commit
[master (root-commit) 4c26688] create the file 'foo’

file changed, insertions(+), deletions(-)
create mode foo

« dark magic

git commit --amend

20 /58

|
git log
» take a look at your commit log

$ git log

e open a pager like the less command

commit 4c26688fc47fc120b262e7155356cb52796bc4bf
Author: xatierlike <xatierlike@gmail.com>
Date: Sun Aug :35: -

create the file 'foo'
(END)

http://git-scm.com/book/en/Git-Tools-Revision-Selection

21/58

http://git-scm.com/book/en/Git-Tools-Revision-Selection

git add

» add our changes to the staging area

$ git add foo

e git diff shows the differences between your working directory and
the staging area

$ git diff

e you can check the changes you staged

$ git diff --staged

 now commit the staging area to the repo

 this will take a snapshot to the repository

$ git commit

[master eabdcbe] modified foo
file changed, insertion(+)

2 /58

git log

» look at the git log again

$ git log

e will show you

commit eabdcbe9999db6d1a58539e84cf4f32f6d841c7b
Author: xatierlike <xatierlike@gmail.com>
Date: Sun Aug :51: -

modified foo

commit 4c26688fc47fc120b262e7155356ch52796bc4bf
Author: xatierlike <xatierlike@gmail.com>
Date: Sun Aug :35: -

create the file 'foo'’

23 /58

do diff often

$ git diff
$ git diff --staged

$ git diff --check
$ git diff HEAD

1. Changes in the working tree not yet staged for the next commit.

N

Changes between the index and your last commit.

Warn if changes introduce whitespace errors.

> W

Changes in the working tree since your last commit.

make sure to check everything
before you do a git commit !!!

24 /58

file status lifecycle

File Status Lifecycle

--

image src: http:
the-Repository

http://git-scm.com/book/en/Git-Basics-Recording-Changes-to-the-Repository

Summary

commit only keeps your changes in the staging area

o that is, the changes in the working directory will be recorded only
after you added them

use git diff to double check the staging area before you add & commit

o don't act like a dummy in your commit messages :P

keep modifications small and clear between commits

rules to write good commit messages

o a brief summary at the first line
o describe the implementation details or your algorithm after that
o write commit messages in English

26 /58

Okay, this is the very basic
usage of git :)

Time to take a break!

27 /58

git add/rm/mv

e git

o git

add

before your commit
add files to your staging area
add new modifications to your staging area

rm (be careful!!!l)

remove entries from the staging area
» By default, a git rm file will remove the file from the staging
area entirely and also off your disk
git rm --cached leave the file in the working directory (i.e. untrack
the file)

mv

git does not track file by name (git is content-based, remember
that?)
git mv = git rm --cached + git add

28 /58

git commit

 make snapshots of your staging area

o after you committed, the working directory will be clean
o that is, we have not made any changes since our last commit

e record your name and email
o git config and ~/.gitconfig
e commit messages

o it's very important to write a good commit message
o useful for code review and trace the history
o what, how and why in this commit

Note: commit logs from last night

29 /58

http://www.commitlogsfromlastnight.com/

.gitighore

in your repo directory

o ./.gitignore

things you don't want to track

o log files, tmp files, build files (change frequently)
o auto generated files
o database passwords

git 1s-files and git status

of course, you need to add this file to the repo

some good examples here

30/58

http://git-scm.com/docs/gitignore

branch

87ab2

98cad 44— 3dac2 4— f30ab

[\

c2ble

testing

31/58

branch

» one of the most powerful features of git
» keep multiple snapshots of the repo
» topic branch

o hot-fix

o bugfix
o feature

git branch
git checkout

git merge

32 /58

http://git-scm.com/book/en/Git-Branching-What-a-Branch-Is

git branch

e list (local) branches

$ git branch
* master

e create a new branch

$ git branch testing

$ git branch
* master
testing

e delete a branch

$ git branch -d testing

33/58

git checkout

- FALIYY

» restore from any snapshots

» switch between your branches

34 /58

image src: Steins; Gate

35/58

git checkout

» switch between your branches

$ git branch
* master
testing

$ git checkout testing
Switched to branch 'testing'’

$ git branch
master
* testing

$ git checkout master
Switched to branch 'master’

¢ shortcut: create & checkout to it

$ git checkout -b blah

Switched to a new branch 'blah’

6/58

git merge

e merge a branch into your current branch (HEAD)

$ git merge testing

blah blah...
x files changed, y insertions(+), z deletions(-)

o conflict!
o different commits modifying on the same parts of code
o fix it, then add and commit

$ cat README
<<<<<<< HEAD
Many Hello World Examples

Hello World Lang Examples
>>>>>>> fix_readme

» three way merge

o find the common history

37 /58

git blame

¢ last modification of each line

» very useful for history tracing or when something is broken

oo

$ git blame git.c

(Junio C Hamano
b11e317 (Johannes Schindelin
fd5c363d (Thiago Farina
fd5¢c363d (Thiago Farina
bad9d6 (Matthias Lederhofer
d8e96fd8 (Jeff King

d6éaa (Nguyén Thai Ngoc Duy

€49d503 (Andreas Ericsson

a7d50 (Ramsay Allan Jones

ad0fb@c (Kevin Bracey 144
03a0fboc (Kevin Bracey 2013-03-11 21:44:15
albea2cl (Josh Triplett -Q7- :54:
albea2cl (Josh Triplett 2011-07-05 10:54:44

b4698e (Stépan Némec -10- e

const char git_us
"git [--ve

vvvvvvvv A A A S0 U g

38 /58

git shortlog

¢ who is the most active committer?

$ git shortlog -nse

Junio C Hamano <gitster@pobox.com>

Shawn 0. Pearce <spearce@spearce.org>

Jeff King <peff@peff.net>

Linus Torvalds <torvalds@linux-foundation.org>
Johannes Schindelin <johannes.schindelin@gmx.de>
Jonathan Nieder <jrnieder@gmail.com>

Nguyén Thai NgoOc Duy <pclouds@gmail.com>
Jakub Narebski <jnareb@gmail.com>

Eric Wong <normalperson@yhbt.net>

René Scharfe <1.s.r@web.de>

Johannes Sixt <j6t@kdbg.org>

Nicolas Pitre <nico@fluxnic.net>

Michael Haggerty <mhagger@alum.mit.edu>

Felipe Contreras <felipe.contreras@gmail.com>

39/58

git show

Show various types of objects

git show <commit>
git show <tag>

40/ 58

git reflog

Show the "reference" of each commit

git reflog

41 /58

git whatchanged

Show logs with differences that each commit introduces

git whatchanged

42 / 58

git stash

Stash away the changes in a dirty working directory

save "message”
pop

list

show -p <reversion>
apply

drop

43 /58

|
git tag
Give a name to a commit

44 / 58

git reset

» Reset current HEAD to the specified state

e DANGEROUS !'!!

¢ two modes

o --mixed Resets the index but not the working tree (default)
o --hard Resets the index and working tree. Any changes to tracked
files in the working tree since are discarded.

<reversion>
--hard HEAD~

<file>
--hard <file>

e must run git diff HEAD before you use git reset

45/ 58

code with your friends!

You'll never code alone

46 / 58

WANT TO WATCH SOURCE

NOBODY WANTS T0 GO
WITH YOU

image src: http://diylol.com/meme-generator/40-year-old-college- 47 |/ 58

ctiidant/mamachanant_tn_watrh_cniirroa_rnda_nnhndviowiante_tna_nn_with_vinan

DIYLOL.COM

http://diylol.com/meme-generator/40-year-old-college-student/memes/want-to-watch-source-code-nobody-wants-to-go-with-you

distributed version
control

project development with 100+ of people?

everyone has his/her own copy(s) of the remote repository

do most stuffs off-line (write some codes on airplane!)

you can do any experiments on your own local repository

remote / fetch / push
o manage your remote repositories with git remote
o update your project with git fetch
o share your changes with git push

http://git-scm.com/book/en/Distributed-Git-Distributed-Workflows

48 / 58

http://git-scm.com/book/en/Distributed-Git-Distributed-Workflows

git remote

¢ list remotes

$ git remote
origin

$ git remote -v
origin git@github.com:xatier/git_intro.git (fetch)
origin git@github.com:xatier/git_intro.git (push)

e add / remove / rename

$ git remote add linux-nfs git://linux-nfs.org/pub/linux/nfs-
$ git remote rm linux-nfs
$ git remote rename linux-nfs linux-nfs-hack

¢ remote branches

$ git branch -a

gh-pages
* master

remotes/origin/HEAD -> origin/master
remotes/origin/gh-pages
remotes/origin/master 9/58

git remote

e secrets here

$ cat .git/config

(omitted...)

[remote "origin"]
url = git@github.com:xatier/git_intro.git
fetch = +refs/heads/*:refs/remotes/origin/*

[branch "master”]

remote = origin

merge = refs/heads/master
[branch "gh-pages"]

remote = origin

merge = refs/heads/gh-pages

» remote show
git remote show
git remote show origin

50/58

fetch, pull and push

e git fetch

o download new branches and data from a remote repository
o synchronize with remote repo

e git pull

o fetch from a remote repo and try to merge into the current
branch
o git pull = git fetch + git merge

e git push
o push your (new) branches to a remote repository

http://git-scm.com/book/en/Git-Basics-Working-with-Remotes

51/58

http://git-scm.com/book/en/Git-Basics-Working-with-Remotes

The Merge workflow

e git push copies your branches to a remote repository
e git fetch copies remote branches to your repository

e git pull does fetch and merge in one go

Do not

e use git push unless you actually want to share the local branch
e use git pull unless you actually want to merge the remote branch

fetch <remote>
fetch <remote> <branch>

pull <url> <branch>
push <remote> <branch>
push <remote> <local_branch_name>:<remote_branch_name>

man gitworkflows

52 /58

github.com

O - r I Explore Gist Blog Help e xatler 1 b 4 T

= xatier = h Mows Feod

Menws Food Pull Requests Isauen Stara

GitHub BOOtCAmMP ¥ you arn 550 now i ings, we'w provicod & low walmughs 1 (ol you sared, ®

Set up Git Create repositories Fork repositories Be social
A quick guida o help you gel Reposiorias are whae you'll work Forking craabes & new, unigle Sand pull nequasis, lolow Trends.
started with Git. and collaborate on profecis. propect from an axisting ona. Star and waich projects.

53/58

github.com

» social coding
» the most popular open source code repository hosting service
» contribute to open source projects

e get jobs from your commit logs!

pAS

image src: https://svpply.com/item/425245/GitHub__| octocat Code 4158

https://svpply.com/item/425245/GitHub__I_octocat_Code

README.md

* a introduction of this repository
e (github flavored) Markdown

o http://markdown.tw/

e https://github-markdown-preview.heroku.com

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

55/58

http://markdown.tw/
https://github-markdown-preview.heroku.com/
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

////

A"
,
-‘5
A \hy
\ v
O L RN N
(] v "
" "

Thanks

57 /58

Reference

http://gitscm.com/book

http://qgitref.org/

https://www.kernel.org/pub/software/scm/git/docs/

https://www.atlassian.com/qit/tutorials/

http://www-cs-students.stanford.edu/~blynn/gitmagic/

http://jonas.nitro.dk/qgit/quick-reference.html

58 /58

http://gitscm.com/book
http://gitref.org/
https://www.kernel.org/pub/software/scm/git/docs/
https://www.atlassian.com/git/tutorials/
http://www-cs-students.stanford.edu/~blynn/gitmagic/
http://jonas.nitro.dk/git/quick-reference.html

