ZFS -
The Last Word in Filesystem

lwhsu (2019, CC-BY)
tzute (2018)
? (?-2018)
Philip Paeps <Philip@FreeBSD.org> (CC-BY)
Benedict Reuschling <bcr@FreeBSD.org> (CC-BY)

o
>
O

1 Redundant Array of Independent Disks
L A group of drives glue into one

M)
O
3
O
<
@
-
D
>

Common RAID types

4 JBOD

d RAID O
d RAID 1
d RAID 5
4 RAID 6
4 RAID 10
4 RAID 50
4 RAID 60

O
0
=
O
=
®
=
A
®
=

M)
O
3
O
<
@
-
D
>

JBOD (Just a Bunch Of Disks)

JBOD
AL 4 \A6d g A2
LR N T
A3 1 NA66 4 A9
A% NABT 4 KA
~
S~
S~
Disk 0 Disk 1 Disk 2

https://zh.wikipedia.org/zh-tw/RAID

https://zh.wikipedia.org/zh-tw/RAID

RAID 0 (Stripe)

RAID O
C)y 5

AL A2
A3 A4
A A6
AT A8

M)
O
3
O
<
@
-
D
>

" "
Disk O Disk 1

https://zh.wikipedia.org/zh-tw/RAID

https://zh.wikipedia.org/zh-tw/RAID

RAID 0 (Stripe)

[Striping data onto multiple devices
O Increase write/read speed

M)
O
3
O
<
@
-
D
>

1 Data corrupt if ANY of the device fails

RAID 1 (Mirror)

RAID 1
C Sy 5

AL AL
A2 A2
A3 A
A4 A

0
@)
=
S
=
@
!
Q)

~_ ~_
Disk O Disk 1

https://zh.wikipedia.org/zh-tw/RAID

https://zh.wikipedia.org/zh-tw/RAID

RAID 1 (Mirror)

1 Devices contain identical data
1 100% redundancy
1 Faster read (but might be slower write)

O
0
=
O
=
®
=
A
®
=

O
0
=
O
=
®
=

RAID 5

Disk O

Disk 1 Disk 2

https://zh.wikipedia.org/zh-tw/RAID

Disk 3

https://zh.wikipedia.org/zh-tw/RAID

RAID 5

. Slower than RAID 0/ RAID 1
 Higher CPU usage

0O
0
=
S,
=
®
=
A
®
=
®
N

@
O
3
O
<
@
-
()

RAID 6

Disk O

Disk 1 Disk 2 Disk 3 Disk 4

https://zh.wikipedia.org/zh-tw/RAID

https://zh.wikipedia.org/zh-tw/RAID

RAID 6

4 Slower than RAID 5
L Use two different correcting algorithms
O Usually implemented via hardware

O
0
=
O
=
®
=
A
®
=

RAID 10

4 RAID 1+0 RAID 1+0
RAID 0

0
@)
=
S
=
@
!
)

Disk O Disk 1 Disk 2 Disk 3

https://zh.wikipedia.org/zh-tw/RAID

https://zh.wikipedia.org/zh-tw/RAID

RAID 507

0O
o
=
O
s
Q)
=
O
Q)
=,
Q)
N

RAID 50 (Parity+Stripe

Disk 4 Disk 5 Disk 6

Disk 1

https://www.icc-usa.com/wp-content/themes/icc solutions/images/raid-calculator/raid-50.png

https://www.icc-usa.com/wp-content/themes/icc_solutions/images/raid-calculator/raid-50.png

RAID 607

0O
0
=
O
=
®
=
A
®
=
®
N

RAID 60 (Doublle Parity+Stripe)
[7 |

L

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7 Disk 8

https://www.icc-usa.com/wp-content/themes/icc solutions/images/raid-calculator/raid-60.png

https://www.icc-usa.com/wp-content/themes/icc_solutions/images/raid-calculator/raid-60.png

Issues of RAID

O https://en.wikipedia.org/wiki/RAID#Weaknesses

 Correlated failures
» Use different batches of drivers!
» Unrecoverable read errors during rebuild
* Increasing rebuild time and failure probability
« Atomicity: including parity inconsistency due to system crashes

« \Write-cache reliability
 Know the limitations and make decision for your scenario

0
@)
=
S
=
@

https://en.wikipedia.org/wiki/RAID#Weaknesses

Software Implementations

O Linux — mdadm
] FreeBSD — GEOM classes

Here comes ZFS

Why ZFS?

O Filesystem is always consistent
* Never overwrite an existing block (transactional Copy-on-Write)
» State atomically advance at checkpoints
« Metadata redundancy and data checksums

O Snapshots (ro) and clones (rw) are cheap and plentiful

O Flexible configuration
« Stripe, mirror, single/double/triple parity RAIDZ

1 Fast remote replication and backups

[Scalable (the first 128 bit filesystem)

L SSD and memory friendly

1 Easy administration (2 commands: zpool & zfs)

https://www.bsdcan.org/2015/schedule/events/525.en.html

End-to-end data integrity

 Disks
 Controllers
 Cables

d Firmware
 Device drivers
 Non-ECC memory

0O
0
=
O
=
®
=
A
®
=

Disk block checksums

0
@)
=
S
=
@
!
)

J Checksums are stored with the
data blocks

A Any self-consistent block will ‘ Data \ ‘ Data \ ‘ Data
have a correct checksum
 Can’t even detect stray writes

 Inherently limited to single
filesystems or volumes

v Bitrot
Phantom writes
Misdirected reads and writes

X
X
Disk block checksums only X DMA parity errors
X
X

validate media Driver bugs
Accidental overwrite

ZFS data authentication

1 Checksums are stored in parent
block pointers

1 Fault isolation between data and
checksum

1 Entire storage pool is a self-
validating Merkle tree

M)
O
3
O
<
@
-
D
>

ZFS data authentication validates
entire 1/0O path

D N N N N NN

Address Address

Address ‘ Address

Data Data

Bit rot

Phantom writes

Misdirected reads and writes
DMA parity errors

Driver bugs

Accidental overwrite

0
@)
=
S
=
@
!
Q)

Traditional storage architecture

1 Single partition or volume per
filesystem

O Each filesystem has limited 1/O
bandwidth

d Filesystems must be manually
resized

1 Storage is fragmented

Filesystem

Lower
1GB 1GB

1GB Disk
Filesystem Filesystem Filesystem
I | I
Volume Volume Volume
(2GB concat) (2GB stripe) (1GB mirror)
/ / /

Even
1GB 1GB

ZFS pooled storage

@
O
3
O
<
@
-
()

1 No partitions required
] Storage pool grows

automatically — — — ZFs

4 All I/O bandwidth is always | | | |

available Storage pool

1 All storage in the pool is shared % % %

Disk Disk Disk

Copy-on-write transactions

1. Initial consistent state 2. COW some blocks

]

v

o

4. Rewrite uberblock (atomic)

s

Simple administration

Only two commands:

1. Storage pools: zpool
« Add and replace disks
« Resize pools

2. Filesystems: zfs
 Quotas, reservations, etc.
« Compression and deduplication
 Snapshots and clones
 atime, readonly, etc.

Storage Pools

0
@)
=
S
=
@
!
)

ZFS Pools

O ZFS is not just a filesystem
O ZFS = filesystem + volume manager

L Works out of the box
4 “Z uper “z”’imple to create

1 Controlled with single command
 zpool

O
©)
=
O
=
Q)
n

ZFS Pools Components

U Pool is create from “Virtual Devices” (vdevs)

U disk: A real disk (typically under /dev)

O file: Afile

O mirror: Two or more disks mirrored together

4 raidz1/2/3: Three or more disks in RAID5/6*

U spare: A spare drive

4 log: A write log device (ZIL SLOG; typically SSD)
[cache: A read cache device (L2ARC,; typically SSD)

RAID in ZFS

O Dynamic Stripe: Intelligent RAID 0
« zfscopies=1|2|3
4 Mirror: RAID 1
1 Raidzl: Improved from RAIDS5 (parity)
O Raidz2: Improved from RAIDG6 (double parity)

O Raidza3: triple parity

0
@)
=
S
=
@

O
©)
=
O
=
Q)
=

Storage pools
Creating storage pools (1/2)

After creating a storage pool, ZFS
To create a storage pool named will automatically:

“tank” from a single disk: 3 Create a filesystem with the
same name (e.g. tank)

zpool create tank /dev/md0

 Mount the filesystem under that
name (e.g. /tank)

ZFS can use disks directly. There is

no need to create partitions or

volumes. The storage is immediately

avallable

O
0
=
O
=
®

Storage pools

All configuration is stored
with the storage pool and
persists across reboots.

No need to edit /etc/fstab.

Creating storage pools (2/2)

t mount | grep tank
ls -al /tank
1s: /tank: No such file or directory
ﬁ zpool create tank /dev/mdo

mount | grep tank

tank on /tank (zfs, local, nfsvdacls)
B 1ls -al /tank
total 9

drwxr-xr-x 2 root wheel 2 Oct 12 12:17 .

i reboot
[...]

B mount | grep tank
tank on /tank (zfs, local, nfsvdacls)

drwxr-xr-x 23 root wheel 28 Oct 12 12:17 ..

Storage pools
Displaying pool status

O
©)

=
O

=
Q)

n

R zpool list
AME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT]
tank 1016G 83K 1016G - - 0% 0% 1.00x ONLINE -

ft zpool status

pool: tank

state: ONLINE

scan: none requested

config:
NAME STATE READ WRITE CKSUM
tank ONLINE (%] (%] (%]
mdo ONLINE 0 0 0

errors: No known data errors

Storage pools
Displaying 1/O statistics

ZFS contains a built-in [zpool iostat 5

capacity operations bandwidth

tOOI_ tO dlsplay I/O pool alloc free read write read write
statistics. 00 0@ i
tank 83K 1016G 0 0 234 841
tank 83K 1016G 0 0 %] 0

Given an interval in
seconds, statistics will be | ;5001 iostat -v

displayed continuously : 11capacqicty opjraticgns bagdwid’Fh
until the user interrupts P27 2.70c free read write read mrite
with Ctrl+C. tank 83K 1016G 0 0 206 739

mdo 83K 1016G 0 @ 206 739

Use -v (verbose) to
display more detailed
statistics.

O
0
=
O
=
®

Storage pools

Destroying storage pools

Destroying storage pools is a
constant time operation. If
you want to get rid of your
data, ZFS will help you do it
very quickly!

All data on a destroyed pool
will be irretrievably lost.

lt time zpool create tank /dev/mde
0.06 real 0.00 user 0.02 sys

B time zpool destroy tank
0.09 real ©0.00 user 0.00 sys

Storage pools
Creating stripes

A pool with just one disk
does not provide any
redundancy, capacity or even
adequate performance.

Stripes offer higher capacity
and better performance
(reading will be parallelised)
but they provide no
redundancy.

t zpool create tank /dev/mdo /dev/mdl

zpool status

pool: tank

state: ONLINE

scan: none requested

lconfig:
NAME STATE
tank ONLINE
mdoe ONLINE
md1 ONLINE

errors: No known data errors

zpool list
AME SIZE ALLOC FREE CAP
tank 1.98T 86K 1.98T 0%

READ WRITE CKSUM

%) %) %)
%) %) %)
%) %) %)

DEDUP HEALTH
1.00x ONLINE

Storage pools

Creating mirrors (RAID-1)

Mirrored storage pools
provide redundancy against
disk failures and better read
performance than single-disk
pools.

However, mirrors only have
50% of the capacity of the
underlying disks.

t zpool
zpool
pool:
state:

scan:
lconfig:

errors:
zpool

AME

tank 1

create tank mirror /dev/md@ /dev/mdl
status

tank
ONLINE
none requested
NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror-0 ONLINE %] %] 0
mde ONLINE 0 0 0
md1 ONLINE 0 0 0

No known data errors

list
SIZE ALLOC FREE CAP DEDUP HEALTH
016G 93K 1016G 0% 1.00x ONLINE

Storage pools
Creating raidz groups

- - " At lt zpool create tank \
raldz IS a Varlatlon on > raidzl /dev/md@® /dev/mdl /dev/md2 /dev/md3
- I I - lt zpool status
RAID-5 with single-, ool sta
. . pool: tan
double-, or triple parity. state: ONLINE
scan: none requested
config:
A raidz group with N disks EAME gm IEIE REAg wmg CKSUQ
- - - - an
of size X with P parity disks raidz1-6 ONLINE e o o
- do ONLINE 0 (%) 0
can hold approximately 7 ONLINE 5 o o
(N — P) = X bytes and can ner T ° 2 2
withstand P device(s) failing
before data Integrlty iS errors: No known data errors
compromised.

Storage pools
Combining vdev types

zpool create tank mirror /dev/md@ /dev/mdl

Single disks, stripes, mirrors tzpool e ey
and I’aidz groups can be invalid vdev specification

use '-f' to override the following errors:

COmbined in a Single Storage mismatched replication level:

pool uses mirror and new vdev is disk
pool

[t zpool create tank \

> raidz2 /dev/mdo /dev/mdl /dev/md2 /dev/md3
[zpool add tank \

ZFS Wl” Complain When > raidz /dev/md4 /dev/md5 /dev/mdé

invalid vdev specification

addlng dEViCES WOUld make use '-f' to override the following errors:

mismatched replication level:

the pOOI IeSS redundant pool uses 2 device parity and new vdev uses 1

" zpool add log/cache/spare

Storage pools
Increasing storage pool capacity

I zpool create tank /dev/mde
More devices can be added to L o ok ey

a storage pool to increase zpool list

: . : AME SIZE ALLOC FREE CAP DEDUP HEALTH
CapaCIty WIthOUt downtlme ank 1.98T 233K 1.98T ©% 1.00x ONLINE

zpool status

pool: tank
Data will be striped across " ean: none requested
the disks, increasing config:
performance, but there will NAME STATE READ WRITE CKSUM
tank ONLINE %] (%] (%]
be no redundancy. o ONLING e o e
md1 ONLINE (%] (%] (%]

|f any d|sk fails a” data. iS errors: No known data errors
lost!

O
0
=
O
=
®

Storage pools
Creating a mirror from a single-disk pool (1/4)

A storage pool consisting of only one device can be converted to
a mirror.

In order for the new device to mirror the data of the already
existing device, the pool needs to be “resilvered”.

This means that the pool synchronises both devices to contain the
same data at the end of the resilver operation.

During resilvering, access to the pool will be slower, but there
will be no downtime.

Storage pools
Creating a mirror from a single-disk pool (2/4)

O
©)
=
O
=
Q)
=

t zpool create tank /dev/mdeo
zpool status

pool: tank

state: ONLINE

scan: none requested

config:
NAME STATE READ WRITE CKSUM
tank ONLINE (%] (%] (%]
mde ONLINE 0 0 0

errors: No known data errors

zpool list
AME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
ank 1016G 93K 1016G - - 0% 0% 1.00x ONLINE -

Storage pools
Creating a mirror from a single-disk pool (3/4)

O “zpool attach

t zpool attach tank /dev/md@ /dev/mdl
zpool status tank
pool: tank
state: ONLINE
status: One or more devices is currently being resilvered. The pool
will continue to function, possibly in a degraded state.
action: Wait for the resilver to complete.
scan: resilver in progress since Fri Oct 12 13:55:56 2018
5.03M scanned out of 44.1M at 396K/s, ©hlm to go
5.03M resilvered, 11.39% done

config:
NAME STATE READ WRITE CKSUM
tank ONLINE %) %) %)
mirror-© ONLINE 0 %) 0
mdoe ONLINE 0 0 0
md1 ONLINE 0 0 @ (resilvering)

errors: No known data errors

Storage pools
Creating a mirror from a single-disk pool (4/4)

O
©)
=
O
=
Q)
=

l# zpool status

pool: tank

state: ONLINE

scan: resilvered 44.2M in ©hlm with © errors on Fri Oct 12 13:56:29 2018

config:
NAME STATE READ WRITE CKSUM
tank ONLINE (%] (%] (%]
mirror-0 ONLINE %] (%] %]
mdo ONLINE 0 0 0
md1 ONLINE 0 0 0

errors: No known data errors

zpool 1list

AME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 1016G 99.5K 1016G - = 0% 0% 1.00x ONLINE -

Zpool command

O
©)
=
O
=
Q)
n

Zpool(8)

zpool list zpool scrub
list all the zpool try to discover silent error or hardware failure
zpool history [pool name]

zpool status [pool name] show all the history of zpool

show status of zpool zpool add <pool name> <vdev>
zpool export/import [pool name] add additional capacity into pool
export or import given pool zpool create/destroy

zpool set/get <properties/all> create/destory zpool

set or show zpool properties
zpool online/offline <pool name> <vdev>
set an device in zpool to online/offline state
zpool attach/detach <pool name> <device> <new device>
attach a new device to an zpool/detach a device from zpool
zpool replace <pool name> <old device> <new device>
replace old device with new device

@
O
3
O
<
@
-
()

Zpool properties

“zpool get all zroot

NAME

zroot
zroot
zroot
zroot
zroot
zroot
zroot
zroot
zroot
zroot
zroot
zroot
zroot
zroot

PROPERTY

size

capacity

altroot

health

guid

version

bootfs

delegation
autoreplace

cachefile

failmode
listsnapshots
feature@async_destroy
feature@device_removal

VALUE
460G
4%

ONLINE

13063928643765267585

zroot/ROOT/default

on
off
wait
off
enabled
enabled

SOURCE

default
default
default
local

default
default
default
default
default
local

local

O
0

=
O

=
D

=

Zpool Sizing

 ZFS reserve 1/64 of pool capacity for safe-guard to protect
CoW

1 RAIDZ1 Space = Total Drive Capacity -1 Drive

L RAIDZ2 Space = Total Drive Capacity -2 Drives

L RAIDZ3 Space = Total Drive Capacity -3 Drives

L Dynamic Stripe of 4* 100GB= 400/ 1.016= ~390GB
0 RAIDZ1 of 4* 100GB = 300GB - 1/64th=~295GB
0 RAIDZ2 of 4* 100GB = 200GB - 1/64th=~195GB
0 RAIDZ2 of 10* 100GB = 800GB - 1/64th=~780GB

http://cuddletech.com/blog/pivot/entry.php?1d=1013

http://cuddletech.com/blog/pivot/entry.php?id=1013

ZFS Dataset

ZFS Datasets

O
0
=
O
=
®
=
~

U Three forms:
o filesystem: just like traditional filesystem
 volume: block device

 snapshot: read-only version of a file system or volume at a given
point of time.

(] Nested

1 Each dataset has associated properties that can be inherited
by sub-filesystems

1 Controlled with single command:
« zfs(8)

Filesystem Datasets

[Create new dataset with

» zfs create <pool name>/<dataset name>(/<dataset name>/...)

M)
O
3
O
<
@
-
D
>

 New dataset inherits properties of parent dataset

Volumn Datasets (ZVols)

 Block storage

1 Located at /dev/zvol/<pool name>/<dataset>
1 Useful for

. iSCSI

 Other non-zfs local filesystem

 Virtual Machine image

@
O
3
O
<
@
-

 Support “thin provisioning” (“sparse volume”)

Dataset properties

$ zfs get all zroot

0
@)
=
S
=
@

NAME PROPERTY VALUE SOURCE
zroot type filesystem -

zroot creation Mon Jul 21 23:13 2014 -

zroot used 22.6G -

zroot available 423G -

zroot referenced 144K -

zroot compressratio 1.07x -

zroot mounted no -

zroot quota none default
zroot reservation none default
zroot recordsize 128K default
zroot mountpoint none local

zroot sharenfs off default

zfs command

O
0

=
O

=
D

=

zfs(8)

zfs set/get <prop. / all> <dataset> ZfS promote

set properties of datasets pro_mote clone to the orgin of
the filesystem

zfs create <dataset> 7fs send/receive
create new dataset send/receive data stream of
zfs destroy the snapshot

destroy datasets/snapshots/clones..
zfs snapshot

create snapshots
zfs rollback

rollback to given snapshot

Snapshots

0
@)
=
S
=
@
!
Q)

Snapshot

O Read-only copy of a dataset or volume

O Useful for file recovery or full dataset rollback

O Denoted by @ symbol

O Snapshots are extremely fast (-er than deleting data!)

O Snapshots occupy (almost) no space until the original data start to
diverge

O How ZFS snapshots really work (Matt Ahrens)
https://www.bsdcan.org/2019/schedule/events/1073.en.html

Snapshot root —>|?4 Live root

https://www.bsdcan.org/2019/schedule/events/1073.en.html

O
©)
=
O
=
Q)
=

Snapshots

Creating and listing snapshots (1/2)

1 A snapshot only needs an identifier
« Can be anything you like!
« A timestamp is traditional

« But you can use more memorable identifiers too...

zfs snapshot tank/users/alice@myfirstbackup
zfs list -t snapshot

NAME USED AVAIL
tank/users/alice@myfirstbackup 0 -

zfs list -rt all tank/users/alice

NAME USED AVAIL
tank/users/alice 23K 984G
tank/users/alice@myfirstbackup 0 -

REFER
23K

REFER
23K
23K

MOUNTPOINT

MOUNTPOINT
/tank/users/alice

Snapshots
Creating and listing snapshots (2/2)

O
0
=
O
=
®

L Snapshots save only the changes between the time they were
created and the previous (if any) snapshot

U If data doesn’t change, snapshots occupy zero space

echo hello world > /tank/users/alice/important _data.txt
zfs snapshot tank/users/alice@mysecondbackup
zfs list -rt all tank/users/alice

NAME USED AVAIL REFER MOUNTPOINT
tank/users/alice 36.5K 984G 23.5K /tank/users/alice
tank/users/alice@myfirstbackup 13K - 23K -

tank/users/alice@mysecondbackup %) - 23.5K -

Snapshots
Differences between snapshots

@
O
3
O
<
@

 ZFS can display the differences between snapshots

touch /tank/users/alice/empty
rm /tank/users/alice/important_data.txt
zfs diff tank/users/alice@mysecondbackup
/tank/users/alice/
- /tank/users/alice/important_data.txt
/tank/users/alice/empty

+ File was added
File was deleted

M File was modified

R File was renamed

Snapshots
Rolling back snapshots (1/2)

O
©)
=
O
=
Q)
=

echo hello world > important_file.txt
D SnapShOtS can be rO“ed echo goodbye cruel world > also_important.txt
back to undo changes

zfs snapshot tank/users/alice@myfirstbackup
1 All files changed since the

snapshot was created will
be discarded

i 1s

[zfs rollback tank/users/alice@myfirstbackup

B 1ls
also_important.txt important_file.txt

Snapshots
Rolling back snapshots (2/2)

touch not_very important.txt
D By dEfau It’ the IateSt E touch also not important.txt
snapshot Is rolled back.

1s
To roll back an older also _not_important.txt not_very important.txt

also important.txt important file.txt

Snap8h0t1 use -r ﬁ zfs snapshot tank/users/alice@mysecondbackup

. . zfs diff tank/users/alice@myfirstbackup \
D NOte that |ntermed|ate > tank/users/alice@mysecondbackup

: M /tank/users/alice/
SnapShOtS WI” be + /tank/users/alice/not_very_ important.txt
destroyed + /tank/users/alice/also_not_important.txt

zfs rollback -r tank/users/alice@myfirstbackup
1s
also _important.txt important_file.txt

D ZFS W|“ warn abOUt thISE zfs rollback tank/users/alice@myfirstbackup

O
0
=
O
=
D
=

Snapshots

Restoring individual files

O Sometimes, we only want to
restore a single file, rather
than rolling back an entire
snapshot

O ZFS keeps snapshots in a
very hidden .zfs/snapshots
directory

 It’s like magic :-)
« Set snapdir=visible to unhide
it
 Remember: snaphots are
read-only. Copying data to

the magic directory won’t
work!

B 1s

also_important.txt important_file.txt

rm *
1s

[t 1ls .zfs/snapshot/myfirstbackup
also_important.txt important_file.txt

[t cp .zfs/snapshot/myfirstbackup/* .

B 1ls
also_important.txt important_file.txt

Snapshots
Cloning snapshots

O
0
=
O
=
®

1 Clones represent a writeable copy of a read-only snapshot
1 Like snapshots, they occupy no space until they start to diverge

zfs list -rt all tank/users/alice

NAME USED AVAIL REFER MOUNTPOINT
tank/users/alice 189M 984G 105M /tank/users/alice
tank/users/alice@mysecondbackup %) - 105M -

zfs clone tank/users/alice@mysecondbackup tank/users/eve

zfs list tank/users/eve
NAME USED AVAIL REFER MOUNTPOINT
tank/users/eve (%] 984G 105M /tank/users/eve

Snapshots

Promoting clones
1 Snapshots cannot be deleted while clones exist

1 To remove this dependency, clones can be promoted to
“ordinary” datasets

1 Note that by promoting the clone, it immediately starts
occupying space

it zfs destroy tank/users/alice@mysecondbackup
cannot destroy 'tank/users/alice@mysecondbackup’:

snapshot has dependent clones
use '-R' to destroy the following datasets:

tank/users/eve

zfs list tank/users/eve
AME USED AVAIL REFER MOUNTPOINT

tank/users/eve 0 984G 105M /tank/users/eve

ft zfs promote tank/users/eve

AME USED AVAIL REFER MOUNTPOINT
ank/users/eve 189M 984G 105M /tank/users/eve

E zfs list tank/users/eve

Self-healing data

Traditional mirroring

1. Application issues a read. 2. Volume manager passes bad 3. Filesystem returns bad data
Mirror reads the first disk, block up to filesystem. to the application.

M)
O
3
O
<
@
-
D
>

which has a corrupt block. If it’s a metadata block, the
It can't tell. filesystem panics. If not...
Application Application Application
[[
Filesystem Filesystem H Fllesystem
| — .
]]

XXVM mirror I xXVM mirror I xxVM mirror

f f

l
\

l
\

1. Application issues a read.
) | ZFS mirror tries the first disk.
= Checksum reveals that the
block is corrupt on disk.

80 JojnduwoD)

Application

ZFS mirror

Self-healing data in ZFS

2. ZFS tries the second disk.
Checksum indicates that the
block is good.

Application

ZFS mirror

._
1

3. ZFS returns good data to the
application and repairs the
damaged block on the first
disk.

Application

.-

ZFS mirror I
A \;

4
/

!

)

!
/

-

Self-healing data demo
Store some important data (1/2)

O
0
=
O
=
®

zfs list tank
D We have Created a RAME USED AVAIL REFER MOUNTPOINT

redundant pool with two [rank 74K 9846 23Kk /tank

mirrored disks and stored cp -a /some/important/data/ /tank/
some important data on it |, ,cc 1ist tank

AME USED AVAIL REFER MOUNTPOINT
tank 3.23G 981G 3.23G /tank

d We will be very sad if the
data gets lost! :-(

Self-healing data demo
Store some important data (2/2)

O
0

=
O

=
D

=

lt zpool status tank
pool: tank
state: ONLINE

scan: none requested

config:
NAME STATE READ WRITE CKSUM
tank ONLINE 0 %] %]
mirror-0 ONLINE 0 0 %]
mdo ONLINE %) 0 %]
md1 ONLINE %) 0 %]

errors: No known data errors

zpool list tank
AME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 1016G 3.51G 1012G - - 0% 0% 1.00x ONLINE -

O
0
=
O
=
®
=
-

Self-healing data demo
Destroy one of the disks (1/2)

Caution!

This example can destroy
data when used on the wrong
device or a non-ZFS
filesystem!

Always check your
backups!

lt zpool export tank
i dd if=/dev/random of=/dev/mdl bs=1m count=200|

[t zpool import tank

Self-healing data demo
Destroy one of the disks (2/2)

O
0
=
O
=
D
=

lt zpool status tank
pool: tank
state: ONLINE
status: One or more devices has experienced an unrecoverable error. An
attempt was made to correct the error. Applications are unaffected.

action: Determine if the device needs to be replaced, and clear the errors
using 'zpool clear' or replace the device with 'zpool replace’.

see: http://illumos.org/msg/ZFS-8000-9P

scan: none requested

config:
NAME STATE READ WRITE CKSUM
tank ONLINE 0 %] %]
mirror-© ONLINE 0 %] %]
mdo ONLINE 0 %] 5
md1 ONLINE 0 %] %]

errors: No known data errors

Self-healing data demo
Make sure everything is okay (1/3)

E zpool scrub tank
zpool status tank
pool: tank
state: ONLINE
status: One or more devices has experienced an unrecoverable error. An
attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors
using 'zpool clear' or replace the device with 'zpool replace'.
see: http://illumos.org/msg/ZFS-8000-9P
scan: scrub in progress since Fri Oct 12 22:57:36 2018
191M scanned out of 3.51G at 23.9M/s, ©0h2m to go
186M repaired, 5.32% done
config:
NAME STATE READ WRITE CKSUM
tank ONLINE (%] (%] (%]
mirror-0 ONLINE 0 (%] %]
mde ONLINE 0 @ 1.49K (repairing)
md1 ONLINE (%] (%] (%]
errors: No known data errors

Self-healing data demo
Make sure everything is okay (2/3)

lt zpool status tank
pool: tank
state: ONLINE
status: One or more devices has experienced an unrecoverable error. An
attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors
using 'zpool clear' or replace the device with 'zpool replace’.
see: http://illumos.org/msg/ZFS-8000-9P
scan: scrub repaired 196M in ©h@m with © errors on Fri Oct 12 22:58:14 2018
config:
NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror-0© ONLINE %) 0 0
mde ONLINE 0 0 1.54K
md1 ONLINE 0 0 0
errors: No known data errors

Self-healing data demo
Make sure everything is okay (3/3)

O
0
=
O
=
®
=
-

l# zpool clear tank

[t zpool status tank

pool: tank
state: ONLINE

scan: scrub repaired 196M in ©hom with © errors on Fri Oct 12 22:58:14 2018

config:
NAME STATE READ WRITE CKSUM
tank ONLINE (%] (%] (%]
mirror-0 ONLINE (%] %] 0
mdo ONLINE (%] 0 0
md1l ONLINE (%] 0 0

errors: No known data errors

Self-healing data demo
But what if it goes very wrong? (1/2)

kt zpool

pool:
state:
status:
action:
see:

scan:

config:

errors:

status

tank

ONLINE

One or more devices has experienced an error resulting in data
corruption. Applications may be affected.

Restore the file in question if possible. Otherwise restore the
entire pool from backup.

http://illumos.org/msg/ZFS-8000-8A

scrub in progress since Fri Oct 12 22:46:01 2018

498M scanned out of 3.51G at 99.6M/s, ©hem to go

19K repaired, 13.87% done

NAME STATE READ WRITE CKSUM
tank ONLINE %) 0 1.48K
mirror-0© ONLINE (%] 0 2.97K
mdo ONLINE (%] 0 2.97K

md1 ONLINE (%] 0 2.97K

1515 data errors, use '-v' for a list

Self-healing data demo
But what If it goes very wrong? (2/2)

kit zpool status -v

pool:
state:
status:

action:
see:

scan:
config:

errors:

tank

ONLINE

One or more devices has experienced an error resulting in data
corruption. Applications may be affected.

Restore the file in question if possible. Otherwise restore the

entire pool from backup.

http://illumos.org/msg/ZFS-8000-8A

scrub repaired 19K in @he@m with 1568 errors on Fri Oct 12 22:46:25 2018

NAME STATE READ WRITE CKSUM
tank ONLINE %) 0 1.53K
mirror-© ONLINE %) 0 3.07K
mde ONLINE %) 0 3.07K

md1 ONLINE %) 0 3.07K

Permanent errors have been detected in the following files:

/tank/FreeBSD-11.2-RELEASE-amd64.vhd. xz
/tank/base-amd64.txz
/tank/FreeBSD-11.2-RELEASE-amd64-discl.iso.xz
/tank/intro_slides.pdf

Deduplication

0O
0
=
O
=
®
=
A
®
=

Duplication

oo

oo

> [0

> [0

Intentional duplication
1 Backups, redundancy

Unintentional duplication
1 Application caches
U Temporary files

1 Node.js (Grrr!)

Deduplication

U Implemented at the block layer

 ZFS detects when it needs to
store an exact copy of a block

1 Only a reference is written
rather than the entire block

 Can save a lot of disk space

O
0

=
O

=
D

=

Deduplication
Memory cost

1 ZFS must keep a table of the checksums of every block it stores
1 Depending on the blocksize, this table can grow very quickly

1 Deduplication table must be fast to access or writes slow down
1 Ideally, the deduplication table should fit in RAM

1 Keeping a L2ARC on fast SSDs can reduce the cost somewnhat

Rule of thumb:
5GB of RAM for each TB of data stored

Deduplication
Is it worth it? (1/2)

O
0
=
O
=
®

O The ZFS debugger (zdb) can be used to evaluate if turning on
deduplication will save space in a pool

 In most workloads, compression will provide much more
significant savings than deduplication

] Consider whether the cost of RAM 1s worth it

1 Also keep in mind that it is a lot easier and cheaper to add disks to
a system than it is to add memory

Deduplication demo
Is it worth it? (2/2)

O
0
=
O
=
D
=

B zdb -S tank
Simulated DDT histogram:

bucket allocated referenced

Irefcnt blocks LSIZE PSIZE DSIZE blocks LSIZE PSIZE DSIZE

dedup = 1.06, compress = 1.00, copies = 1.00, dedup * compress / copies = 1.06

Deduplication demo
Control experiment (1/2)

R zpool list tank
AME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

tank 7.50G 79.5K 7.50G - - 0% 0% 1.00x ONLINE -
zfs get compression,dedup tank

AME PROPERTY VALUE SOURCE

tank compression off default

tank dedup off default

ft for p in "seq @ 4 ; do
> zfs create tank/ports/$p

> portsnap -d /tmp/portsnap -p /tank/ports/$p extract &
> done

zpool list tank

AME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 7.50G 2.14G 5.36G - - 3% 28% 1.00x ONLINE -

Deduplication demo
Control experiment (2/2)

i zdb -S tank
Simulated DDT histogram:

bucket allocated referenced

Irefcnt blocks LSIZE PSIZE DSIZE blocks LSIZE PSIZE DSIZE

4 131K 374M 374M 374M 656K 1.82G 1.82G 1.82G

8 2.28K 4.60M 4.60M 4.60M 23.9K 48.0M 48.0M 48.0M

16 144 526K 526K 526K 3.12K 10.5M 10.5M 10.5M

32 22 23.5K 23.5K 23.5K 920 978K 978K 978K

64 2 1.50K 1.50K 1.50K 135 100K 100K 100K
256 1 512 512 512 265 132K 132K 132K
Total 134K 379M 379M 379M 685K 1.88G 1.88G 1.88G

dedup = 5.09, compress = 1.00, copies = 1.00, dedup * compress / copies = 5.09

Deduplication demo
Enabling deduplication

R zpool list tank

AME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 7.50G 79.5K 7.50G = = 0% 0% 1.00x ONLINE -

zfs get compression,dedup tank

AME PROPERTY VALUE SOURCE
tank compression off default
tank dedup on default

ft for p in "seq @ 4 ; do
> zfs create tank/ports/$p

> portsnap -d /tmp/portsnap -p /tank/ports/$p extract &
> done

zpool list tank

AME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 7.50G 670M 6.85G - - 6% 8% 5.08x ONLINE -

Deduplication demo
Compare with compression

R zpool list tank

AME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP

tank 7.50G 79.5K 7.50G - - 0%
zfs get compression,dedup tank

AME PROPERTY VALUE SOURCE

tank compression gzip-9 local

tank dedup off default
ft for p in "seq @ 4 ; do

> zfs create tank/ports/$p

> portsnap -d /tmp/portsnap -p /tank/ports/$p extract &
> done

zpool list tank
AME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG
tank 7.50G 752M 6.77G - - 3%

CAP DEDUP
9% 1.00x

0% 1.00x ONLINE -

HEALTH ALTROOT

HEALTH ALTROOT
ONLINE -

Deduplication
Summary

O
0
=
O
=
®
=

 ZFS deduplication can save a
lot of space under some
workloads but at the expense of
a lot of memory

4 Often, compression will give
similar or better results Deduplication 670M

] Compression 752M
O Always check with zdb -S

whether deduplication would be
worth it

Performance Tuning

O
0
=
O
=
®
=
A
®
=

General tuning tips

L System memory

L Access time

1 Dataset compression
O Deduplication

O ZFS send and receive

Random Access Memory

1 ZFS performance depends on the amount of system

« recommended minimum: 1GB
4GB is ok
« 8GB and more is good

O
0
=
O
=
®
=
A
®
=

Dataset compression

] Save space
O Increase CPU usage
O Increase data throughput

Deduplication

U requires even more memory
U increases CPU usage

0O
0
=
S,
=
®
=
A
®
=
®
N

ZFS send/recv

U using buffer for large streams
» misc/buffer
« misc/mbuffer (network capable)

Database tuning

 For PostgreSQL and MySQL users recommend using a
different recordsize than default 128Kk.

0
@)
=
S
=
@

1 PostgreSQL.: 8k
O MySQL MyISAM storage: 8k
O MySQL InnoDB storage: 16k

File Servers

1 Disable access time

 keep number of snapshots low

[dedup only if you have lots of RAM

O for heavy write workloads move ZIL to separate SSD drives
(1 optionally disable ZIL for datasets (beware consequences)

0
@)
=
S
=
@
)

Webservers

1 Disable redundant data caching
« Apache
» EnableMMAP Off
» EnableSendfile Off
* Nginx
» Sendfile off
 Lighttpd
» server.network-backend="writev"

O
0
=
O
=
®
=
A
®
=

Cache and Prefetch

ARC

Adaptive Replacement Cache
Resides in system RAM
major speedup to ZFS
the size is auto-tuned
Default:
arc max: memory size - 1GB
metadata limit: ¥4 of arc_max
arc min: ¥z of arc_meta_limit (but at least 16 MB)

@
O
3
O
<
@

Tuning ARC

d Disable ARC on per-dataset level
 maximum can be limited

O increasing arc_meta_limit may help if working with many
files

@
O
3
O
<
@

O # sysctl kstat.zfs.misc.arcstats.size
O # sysctl vfs.zfs.arc_meta used
O # sysctl vfs.zfs.arc_meta_limit

O http://www.krausam.de/?p=70

http://www.krausam.de/?p=70

L2ARC

O L2 Adaptive Replacement Cache
* Is designed to run on fast block devices (SSD)
* helps primarily read-intensive workloads
» each device can be attached to only one ZFS pool

@
O
3
O
<
@

1 # zpool add <pool name> cache <vdevs>
U # zpool add remove <pool name> <vdevs>

Tuning L2ZARC

@
O
3
O
<
@

enable prefetch for streaming or serving of large files
configurable on per-dataset basis
turbo warmup phase may require tuning (e.g. set to 16MB)

vfs.zfs.12arc_noprefetch
vfs.zfs.|2arc_write_max
vfs.zfs.[2arc_write boost

ZIL

O
©)
=
O
=
Q)
=

d ZFS Intent Log

 guarantees data consistency on fsync() calls
* replays transaction in case of a panic or power failure
« use small storage space on each pool by default

1 To speed up writes, deploy zil on a separate log device(SSD)

O Per-dataset synchonocity behavior can be configured
 # zfs set sync=[standard|always|disabled] dataset

File-level Prefetch (zfetch)

L Analyses read patterns of files
U Tries to predict next reads

0
@)
=
S
=
@
!
Q)

1 Loader tunable to enable/disable zfetch:
vfs.zfs.prefetch_disable

0
@)
=
S
=
@
)

Device-level Prefetch (vdev prefetch)

 reads data after small reads from pool devices
O useful for drives with higher latency

L consumes constant RAM per vdev

O is disabled by default

] Loader tunable to enable/disable vdev prefetch:
vfs.zfs.vdev.cache.size=[bytes]

ZFS Statistics Tools

sysctl vfs.zfs
sysctl kstat.zfs

0
@)
=
S
=
@

using tools:
zfs-stats: analyzes settings and counters since boot
zfsf-mon: real-time statistics with averages

Both tools are available in ports under sysutils/zfs-stats

References

O
0

=
O

=
D

=

O ZFS: The last word in filesystems (Jeff Bonwick & Bill Moore)

O ZFS tuning in FreeBSD (Martin Matu“ska):

 Slide

» http://blog.vx.sk/uploads/conferences/EuroBSDcon2012/zfs-tuning-
handout.pdf

* Video
» https://www.youtube.com/watch?v=PIpl7Ub6yjo
1 Becoming a ZFS Ninja (Ben Rockwood):

« http://www.cuddletech.com/blog/pivot/entry.php?id=1075

O ZFS Administration:
* https://pthree.org/2012/12/14/zfs-administration-part-ix-copy-on-write

@
O
3
O
<
@
-
()

References (c.)

O https://www.freebsd.org/doc/zh TW/books/handbook/zfs-
zfs.html

1 “ZFS Mastery” books (Michael W. Lucas & Allan Jude)
* FreeBSD Mastery: ZFS
» FreeBSD Mastery: Advanced ZFS

O ZFS for Newbies (Dan Langille)

 https://www.youtube.com/watch?v=30G-
1US5AI9A&list=PLskKNopggjc6NssLc8GEGSIFYJLYdITOx&inde
x=20
O The future of OpenZFS and FreeBSD (Allan Jude)

« https://www.youtube.com/watch?v=gmaHZBwDKho&list=PLskKN
o0pggjcbNsSLC8GEGSIFYJLYdITOx&index=23

O How ZFS snapshots really work (Matt Ahrens)
« https://www.bsdcan.org/2019/schedule/events/1073.en.html

https://www.freebsd.org/doc/zh_TW/books/handbook/zfs-zfs.html
https://www.youtube.com/watch?v=3oG-1U5AI9A&list=PLskKNopggjc6NssLc8GEGSiFYJLYdlTQx&index=20
https://www.youtube.com/watch?v=gmaHZBwDKho&list=PLskKNopggjc6NssLc8GEGSiFYJLYdlTQx&index=23
https://www.bsdcan.org/2019/schedule/events/1073.en.html

