
交大資工系資訊中心
Computer Center of Department of Computer Science, NCTU

ZFS
The Last Word in Filesystem

1

lwhsu (2019-2020, CC BY)
tzute (2018)
? (?-2018)

2

Copyright
Besides authors listed in the cover, this deck contains the slides from
following people:
● Allan Jude <allanjude@FreeBSD.org>

○ ZFS history and OpenZFS
● Benedict Reuschling <bcr@FreeBSD.org>

○ ZFS introduction and zfs/zpool command usage
● Philip Paeps <philip@FreeBSD.org>

○ ZFS introduction and zfs/zpool command usage

3

RAID
● Redundant Array of Independent Disks

○ Old name: Inexpensive
● A group of drives combined into one

4

Common RAID types
● JBOD
● RAID 0
● RAID 1
● RAID 5
● RAID 6
● RAID 10
● RAID 50
● RAID 60

5

JBOD (Just a Bunch Of Disks)

https://zh.wikipedia.org/zh-tw/RAID

https://zh.wikipedia.org/zh-tw/RAID

6

RAID 0 (Stripe)

https://zh.wikipedia.org/zh-tw/RAID

https://zh.wikipedia.org/zh-tw/RAID

7

RAID 0 (Stripe)
● Striping data onto multiple devices
● Increase write/read speed
● Data corrupt if ANY of the device fails

8

RAID 1 (Mirror)

https://zh.wikipedia.org/zh-tw/RAID

https://zh.wikipedia.org/zh-tw/RAID

9

RAID 1 (Mirror)
● Devices contain identical data
● 100% redundancy
● Faster read (but might be slower write)

10

RAID 5

https://zh.wikipedia.org/zh-tw/RAID

https://zh.wikipedia.org/zh-tw/RAID

11

RAID 5
● Slower than RAID 0 / RAID 1
● Higher CPU usage

12

RAID 6

https://zh.wikipedia.org/zh-tw/RAID

https://zh.wikipedia.org/zh-tw/RAID

13

RAID 6
● Slower than RAID 5
● Use two different correcting algorithms
● Usually implemented via hardware

14

RAID 10
● RAID 1+0

https://zh.wikipedia.org/zh-tw/RAID

https://zh.wikipedia.org/zh-tw/RAID

15

RAID 50?

https://www.icc-usa.com/wp-content/themes/icc_solutions/images/raid-calculator/raid-50.png

https://www.icc-usa.com/wp-content/themes/icc_solutions/images/raid-calculator/raid-50.png

16

RAID60?

https://www.icc-usa.com/wp-content/themes/icc_solutions/images/raid-calculator/raid-60.png

https://www.icc-usa.com/wp-content/themes/icc_solutions/images/raid-calculator/raid-60.png

17

Issues of RAID
● https://en.wikipedia.org/wiki/RAID#Weaknesses

○ Correlated failures
■ Use different batches of drivers!

○ Unrecoverable read errors during rebuild
○ Increasing rebuild time and failure probability
○ Atomicity: including parity inconsistency due to system crashes
○ Write-cache reliability

● Know the limitations and make decision for your scenario

https://en.wikipedia.org/wiki/RAID#Weaknesses

18

Software Implementations
● Linux – mdadm
● FreeBSD – GEOM classes

交大資工系資訊中心
Computer Center of Department of Computer Science, NCTU

Here comes ZFS

19

20

Evolution of ZFS
● Originally developed at Sun Microsystems starting in 2001
● Open source under CDDL in 2005
● Oracle bought Sun in 2010, and close sourd further work
● illumos, a fork of the last open source version of (Open)Solaris

became the new upstream for work on ZFS
● ZFS was ported to many platforms

○ FreeBSD 2007
○ Linux 2008

● The OpenZFS project founded to coordinate development across
platforms

21

OpenZFS
● https://openzfs.org
● https://openzfs.github.io/openzfs-docs/
● https://github.com/openzfs/zfs
● All platforms can get the new feature faster
● OS dependent and OS independent codes in one repository

○ The old model (OS independent only) doesn’t work well
● Working on standardize the command line interface where it has

diverged across platforms
● More effort into effective naming of tunables (closer to user)

https://openzfs.org
https://openzfs.github.io/openzfs-docs/
https://github.com/openzfs/zfs

22

OpenZFS Platforms
● OpenZFS is now available on almost every platform

○ illumos (OmniOS, OpenIndiana, SmartOS, DilOS, Tribblix)
○ FreeBSD (FreeNAS, XigmaNAS, pfSense, etc.)
○ NetBSD
○ Linux
○ macOS
○ Windows
○ OSv

23

Why ZFS?
● Filesystem is always consistent

○ Never overwrite an existing block (transactional Copy-on-Write)
○ State atomically advance at checkpoints
○ Metadata redundancy and data checksums

● Snapshots (ro) and clones (rw) are cheap and plentiful
● Flexible configuration

○ Stripe, mirror, single/double/triple parity RAIDZ
● Fast remote replication and backups
● Scalable (the first 128 bit filesystem)
● SSD and memory friendly
● Easy administration (2 commands: zpool & zfs)

https://www.bsdcan.org/2015/schedule/events/525.en.html

24

End-to-end data integrity
● Disks
● Controllers
● Cables
● Firmware
● Device drivers
● Non-ECC memory

25

Disk block checksums
● Checksums are stored with the

data blocks
● Any self-consistent block will

have a correct checksum
● Can’t even detect stray writes
● Inherently limited to single file

systems or volumes

Disk block checksums
only validate media

Data

Checksum

Data

Checksum

Data

Checksum

✔ Bit rot
● Phantom writes
● Misdirected reads and writes
● DMA parity errors
● Driver bugs
● Accidental overwrite

26

ZFS data authentication
● Checksums are stored in parent

block pointers
● Fault isolation between data and

checksum
● Entire storage pool is a

self-validating Merkle tree

ZFS data authentication
validates entire I/O path

Address Address

Checksum Checksum

Address Address

Checksum Checksum

Data Data

✔ Bit rot
✔ Phantom writes
✔ Misdirected reads and writes
✔ DMA parity errors
✔ Driver bugs
✔ Accidental overwrite

27

Traditional storage architecture
● Single partition or volume per

filesystem
● Each filesystem has limited I/O

bandwidth
● Filesystems must be manually

resized
● Storage is fragmented

FileSystem

1GB Disk

Volume
(2GB concat)

Lower
1GB

FileSystem

Upper
1GB

Volume
(2GB stripe)

Even
1GB

FileSystem

Odd
1GB

Volume
(1GB mirror)

Left
1GB

FileSystem

Right
1GB

28

ZFS pooled storage
● No partitions required
● Storage pool grows automatically
● All I/O bandwidth is always available
● All storage in the pool is shared

ZFS ZFS ZFS ZFS

Storage Pool

Disk Disk Disk

29

Copy-on-write transactions
1. Initial consistent state 2. COW some blocks

3. COW indirect blocks 4. Rewrite uberblock (atomic)

30

Simple administration
● Only two commands:

○ Storage pools: zpool
■ Add and replace disks
■ Resize pools

○ Filesystems: zfs
■ Quotas, reservations, etc.
■ Compression and deduplication
■ Snapshots and clones
■ atime, readonly, etc.

交大資工系資訊中心
Computer Center of Department of Computer Science, NCTU

Storage Pools

31

32

ZFS Pool
● ZFS is not just a filesystem
● ZFS = filesystem + volume manager
● Works out of the box

● "Z"uper "Z"imple to create
● Controlled with single command

○ zpool
● zpool(8)
● zpoolconcepts(8)

33

ZFS Pools Components
● Pool is create from “Virtual Devices” (vdevs)
● disk: A real disk (typically under /dev)
● file: A file
● mirror: Two or more disks mirrored together
● raidz1/2/3: Three or more disks in RAID5/6*
● spare: A spare drive
● log: A write log device (ZIL SLOG; typically SSD)
● cache: A read cache device (L2ARC; typically SSD)

34

RAID in ZFS
● Dynamic Stripe: Intelligent RAID 0

○ zfs copies=1 | 2 | 3
● Mirror: RAID 1
● Raidz1: Improved from RAID5 (parity)
● Raidz2: Improved from RAID6 (double parity)
● Raidz3: Triple parity

35

Storage pools
 Creating storage pools (1/2)
● To create a storage pool named "tank" from a single disk:

○ zpool create tank /dev/md0
■ ZFS can use disks directly. There is no need to create partitions or

volumes.
● After creating a storage pool, ZFS will automatically:

○ Create a filesystem with the same name (e.g. tank)
○ Mount the filesystem under that name (e.g. /tank)

● The storage is immediately available

36

Storage pools
 Creating storage pools (2/2)
● All configuration is stored with the storage pool and persists across

reboots.
● No need to edit /etc/fstab.

mount | grep tank
ls -al /tank
ls: /tank: No such file or directory
zpool create tank /dev/md0
mount | grep tank
tank on /tank (zfs, local, nfsv4acls)
ls -al /tank
total 9
drwxr-xr-x 2 root wheel 2 Oct 12 12:17 .
drwxr-xr-x 23 root wheel 28 Oct 12 12:17 ..
reboot
[...]
mount | grep tank
tank on /tank (zfs, local, nfsv4acls)

37

Storage pools
 Displaying pool status
zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH
ALTROOT
tank 1016G 83K 1016G - - 0% 0% 1.00x ONLINE -

zpool status
 pool: tank
 state: ONLINE
 scan: none requested
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
 md0 ONLINE 0 0 0

errors: No known data errors

38

Storage pools
 Displaying I/O statistics
● ZFS contains a built-in tool to display I/O statistics.
● Given an interval in seconds, statistics will be displayed continuously until

the user interrupts with Ctrl+C.
● Use -v (verbose) to display more detailed statistics.

zpool iostat 5
 capacity operations bandwidth
pool alloc free read write read write
---------- ----- ----- ----- ----- ----- -----
tank 83K 1016G 0 0 234 841
tank 83K 1016G 0 0 0 0

zpool iostat -v
 capacity operations bandwidth
pool alloc free read write read write
---------- ----- ----- ----- ----- ----- -----
tank 83K 1016G 0 0 206 739
 md0 83K 1016G 0 0 206 739
---------- ----- ----- ----- ----- ----- -----

39

Storage pools
 Destroying storage pools
● Destroying storage pools is a constant time operation. If you want

to get rid of your data, ZFS will help you do it very quickly!
● All data on a destroyed pool will be irretrievably lost.

time zpool create tank /dev/md0
 0.06 real 0.00 user 0.02 sys

time zpool destroy tank
 0.09 real 0.00 user 0.00 sys

40

Storage pools
 Creating stripes
● A pool with just one disk does

not provide any redundancy,
capacity or even adequate
performance.

● Stripes offer higher capacity
and better performance (reading
will be parallelised) but they
provide no redundancy.

zpool create tank /dev/md0 /dev/md1
zpool status
 pool: tank
 state: ONLINE
 scan: none requested
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
 md0 ONLINE 0 0 0
 md1 ONLINE 0 0 0

errors: No known data errors

zpool list
NAME SIZE ALLOC FREE CAP DEDUP HEALTH
tank 1.98T 86K 1.98T 0% 1.00x ONLINE

41

Storage pools
 Creating mirrors (RAID-1)
● Mirrored storage pools provide

redundancy against disk failures
and better read performance than
single-disk pools.

● However, mirrors only have 50%
of the capacity of the underlying
disks.

zpool create tank mirror /dev/md0 /dev/md1
zpool status
 pool: tank
 state: ONLINE
 scan: none requested
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 md0 ONLINE 0 0 0
 md1 ONLINE 0 0 0

errors: No known data errors
zpool list
NAME SIZE ALLOC FREE CAP DEDUP HEALTH
tank 1016G 93K 1016G 0% 1.00x ONLINE

42

Storage pools
 Creating raidz groups
● raidz is a variation on RAID-5

with single-, double-, or triple
parity.

● A raidz group with N disks of
size X with P parity disks can
hold approximately (𝑁 − 𝑃) ∗ 𝑋
bytes and can withstand P
device(s) failing before data
integrity is compromised.

zpool create tank \
> raidz1 /dev/md0 /dev/md1 /dev/md2 /dev/md3
zpool status
 pool: tank
 state: ONLINE
 scan: none requested
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
 raidz1-0 ONLINE 0 0 0
 md0 ONLINE 0 0 0
 md1 ONLINE 0 0 0
 md2 ONLINE 0 0 0
 md3 ONLINE 0 0 0

errors: No known data errors

43

Storage pools
 Combining vdev types
● Single disks, stripes, mirrors

and raidz groups can be
combined in a single storage
pool

● ZFS will complain when adding
devices would make the pool
less redundant

● zpool add log/cache/spare

zpool create tank mirror /dev/md0 /dev/md1
zpool add tank /dev/md2
invalid vdev specification
use '-f' to override the following errors:
mismatched replication level:
pool uses mirror and new vdev is disk

zpool create tank \
> raidz2 /dev/md0 /dev/md1 /dev/md2 /dev/md3

zpool add tank \
> raidz /dev/md4 /dev/md5 /dev/md6
invalid vdev specification
use '-f' to override the following errors:
mismatched replication level:
pool uses 2 device parity and new vdev uses 1

44

Storage pools
 Increasing storage pool capacity
● More devices can be added to a

storage pool to increase
capacity without downtime.

● Data will be striped across the
disks, increasing performance,
but there will be no
redundancy.

● If any disk fails, all data is lost!

zpool create tank /dev/md0
zpool add tank /dev/md1
zpool list
NAME SIZE ALLOC FREE CAP DEDUP HEALTH
tank 1.98T 233K 1.98T 0% 1.00x ONLINE
zpool status
 pool: tank
 state: ONLINE
 scan: none requested
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
 md0 ONLINE 0 0 0
 md1 ONLINE 0 0 0

errors: No known data errors

45

Storage pools
 Creating a mirror from a single-disk pool (1/4)
● A storage pool consisting of only one device can be converted to a

mirror.
● In order for the new device to mirror the data of the already

existing device, the pool needs to be “resilvered”.
● This means that the pool synchronises both devices to contain the

same data at the end of the resilver operation.
● During resilvering, access to the pool will be slower, but there will

be no downtime.

46

Storage pools
 Creating a mirror from a single-disk pool (2/4)
zpool create tank /dev/md0
zpool status
 pool: tank
 state: ONLINE
 scan: none requested
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
 md0 ONLINE 0 0 0

errors: No known data errors

zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 1016G 93K 1016G - - 0% 0% 1.00x ONLINE -

● zpool attach

47

Storage pools
 Creating a mirror from a single-disk pool (3/4)

zpool create tank /dev/md0
zpool status
 pool: tank
 state: ONLINE
 scan: none requested
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
 md0 ONLINE 0 0 0

errors: No known data errors

zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 1016G 93K 1016G - - 0% 0% 1.00x ONLINE -

48

Storage pools
 Creating a mirror from a single-disk pool (4/4)
zpool status
 pool: tank
 state: ONLINE
 scan: resilvered 44.2M in 0h1m with 0 errors on Fri Oct 12 13:56:29 2018
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 md0 ONLINE 0 0 0
 md1 ONLINE 0 0 0

errors: No known data errors

zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 1016G 99.5K 1016G - - 0% 0% 1.00x ONLINE -

49

Zpool command
● zpool(8)

○ zpool list
■ list all the zpool

○ zpool status [pool name]
■ show status of zpool

○ zpool export/import [pool name]
■ export or import given pool

○ zpool set/get <properties/all>
■ set or show zpool properties

○ zpool online/offline <pool name> <vdev>
■ set an device in zpool to online/offline state

○ zpool attach/detach <pool name> <device> <new device>
■ attach a new device to an zpool/detach a device from zpool

○ zpool replace <pool name> <old device> <new device>
■ replace old device with new device

○ zpool scrub
■ try to discover silent error or hardware failure

○ zpool history [pool name]
■ show all the history of zpool

○ zpool add <pool name> <vdev>
■ add additional capacity into pool

○ zpool create/destroy
■ create/destory zpool

https://www.freebsd.org/cgi/man.cgi?zpool(8)

50

Zpool properties
zpool get all zroot
NAME PROPERTY VALUE SOURCE
zroot size 460G -
zroot capacity 4% -
zroot altroot - default
zroot health ONLINE -
zroot guid 13063928643765267585 default
zroot version - default
zroot bootfs zroot/ROOT/default local
zroot delegation on default
zroot autoreplace off default
zroot cachefile - default
zroot failmode wait default
zroot listsnapshots off default
zroot feature@async_destroy enabled local
zroot feature@device_removal enabled local

51

Zpool Sizing
● ZFS reserve 1/64 of pool capacity for safe-guard to protect CoW

● RAIDZ1 Space = Total Drive Capacity -1 Drive
● RAIDZ2 Space = Total Drive Capacity -2 Drives
● RAIDZ3 Space = Total Drive Capacity -3 Drives
● Dynamic Stripe of 4* 100GB= 400 / 1.016= ~390GB
● RAIDZ1 of 4* 100GB = 300GB - 1/64th= ~295GB
● RAIDZ2 of 4* 100GB = 200GB - 1/64th= ~195GB
● RAIDZ2 of 10* 100GB = 800GB - 1/64th= ~780GB

http://cuddletech.com/blog/pivot/entry.php?id=1013

http://cuddletech.com/blog/pivot/entry.php?id=1013

交大資工系資訊中心
Computer Center of Department of Computer Science, NCTU

ZFS Dataset

52

53

ZFS Datasets
● Three forms:

○ filesystem: just like traditional filesystem
○ volume: block device
○ snapshot: read-only version of a file system or volume at a given

point of time.
● Nested
● Each dataset has associated properties that can be inherited by

sub-filesystems
● Controlled with single command:

○ zfs(8)

https://www.freebsd.org/cgi/man.cgi?zfs(8)

54

Filesystem Datasets
● Create new dataset with

○ zfs create <pool name>/<dataset name>(/<dataset name>/…)
● New dataset inherits properties of parent dataset

55

Volume Datasets (ZVols)
● Block storage
● Located at /dev/zvol/<pool name>/<dataset>
● Useful for

○ iSCSI
○ Other non-zfs local filesystem
○ Virtual Machine image

● Support "thin provisioning" ("sparse volume")

56

Dataset properties
$ zfs get all zroot
NAME PROPERTY VALUE SOURCE
zroot type filesystem -
zroot creation Mon Jul 21 23:13 2014 -
zroot used 22.6G -
zroot available 423G -
zroot referenced 144K -
zroot compressratio 1.07x -
zroot mounted no -
zroot quota none default
zroot reservation none default
zroot recordsize 128K default
zroot mountpoint none local
zroot sharenfs off default

57

zfs command
● zfs(8)

○ zfs set/get <prop. / all> <dataset>
■ set properties of datasets

○ zfs create <dataset>
■ create new dataset

○ zfs destroy
■ destroy datasets/snapshots/clones..

○ zfs snapshot
■ create snapshots

○ zfs rollback
■ rollback to given snapshot

○ zfs promote
■ promote clone to the orgin of

the filesystem
○ zfs send/receive

■ send/receive data stream of the
snapshot

https://www.freebsd.org/cgi/man.cgi?zfs(8)

交大資工系資訊中心
Computer Center of Department of Computer Science, NCTU

Snapshots

58

59

Snapshot
● Read-only copy of a dataset or volume
● Useful for file recovery or full dataset rollback
● Denoted by @ symbol
● Snapshots are extremely fast (-er than deleting data!)
● Snapshots occupy (almost) no space until the original data start to diverge
● How ZFS snapshots really work (Matt Ahrens)

○ https://www.bsdcan.org/2019/schedule/events/1073.en.html

Snapshot root Live root

https://www.bsdcan.org/2019/schedule/events/1073.en.html

60

Snapshots
 Creating and listing snapshots (1/2)
● A snapshot only needs an identifier

○ Can be anything you like!
○ A timestamp is traditional
○ But you can use more memorable identifiers too…
zfs snapshot tank/users/alice@myfirstbackup
zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
tank/users/alice@myfirstbackup 0 - 23K -

zfs list -rt all tank/users/alice
NAME USED AVAIL REFER MOUNTPOINT
tank/users/alice 23K 984G 23K /tank/users/alice
tank/users/alice@myfirstbackup 0 - 23K -

61

Snapshots
 Creating and listing snapshots (2/2)
● Snapshots save only the changes between the time they were

created and the previous (if any) snapshot
● If data doesn’t change, snapshots occupy zero space

echo hello world > /tank/users/alice/important_data.txt
zfs snapshot tank/users/alice@mysecondbackup
zfs list -rt all tank/users/alice
NAME USED AVAIL REFER MOUNTPOINT
tank/users/alice 36.5K 984G 23.5K /tank/users/alice
tank/users/alice@myfirstbackup 13K - 23K -
tank/users/alice@mysecondbackup 0 - 23.5K -

62

Snapshots
 Differences between snapshots
● ZFS can display the differences between snapshots

touch /tank/users/alice/empty
rm /tank/users/alice/important_data.txt
zfs diff tank/users/alice@mysecondbackup
M /tank/users/alice/
- /tank/users/alice/important_data.txt
+ /tank/users/alice/empty

Character Type of change
+ File was added
- File was deleted

M File was modified
R File was renamed

63

Snapshots
 Rolling back snapshots (1/2)
● Snapshots can be rolled back to undo changes
● All files changed since the snapshot was created will be discarded

echo hello_world > important_file.txt
echo goodbye_cruel_world > also_important.txt
zfs snapshot tank/users/alice@myfirstbackup

rm *
ls
zfs rollback tank/users/alice@myfirstbackup
ls
also_important.txt important_file.txt

64

Snapshots
 Rolling back snapshots (2/2)
● By default, the latest snapshot

is rolled back. To roll back an
older snapshot, use -r

● Note that intermediate
snapshots will be destroyed

● ZFS will warn about this

touch not_very_important.txt
touch also_not_important.txt
ls
also_important.txt important_file.txt
also_not_important.txt not_very_important.txt

zfs snapshot tank/users/alice@mysecondbackup
zfs diff tank/users/alice@myfirstbackup \
> tank/users/alice@mysecondbackup
M /tank/users/alice/
+ /tank/users/alice/not_very_important.txt
+ /tank/users/alice/also_not_important.txt

zfs rollback tank/users/alice@myfirstbackup
zfs rollback -r tank/users/alice@myfirstbackup
ls
also_important.txt important_file.txt

65

Snapshots
 Restoring individual files
● Sometimes, we only want to

restore a single file, rather than
rolling back an entire snapshot

● ZFS keeps snapshots in a very
hidden .zfs/snapshots directory
○ It’s like magic :-)
○ Set snapdir=visible to unhide it

● Remember: snapshots are
read-only. Copying data to the
magic directory won’t work!

ls
also_important.txt
important_file.txt

rm *
ls

ls .zfs/snapshot/myfirstbackup
also_important.txt
important_file.txt

cp .zfs/snapshot/myfirstbackup/* .

ls
also_important.txt
important_file.txt

66

Snapshots
 Cloning snapshots
● Clones represent a writeable copy of a read-only snapshot
● Like snapshots, they occupy no space until they start to diverge

zfs list -rt all tank/users/alice
NAME USED AVAIL REFER MOUNTPOINT
tank/users/alice 189M 984G 105M /tank/users/alice
tank/users/alice@mysecondbackup 0 - 105M -

zfs clone tank/users/alice@mysecondbackup tank/users/eve

zfs list tank/users/eve
NAME USED AVAIL REFER MOUNTPOINT
tank/users/eve 0 984G 105M /tank/users/eve

67

Snapshots
 Promoting clones
● Snapshots cannot be deleted

while clones exist
● To remove this dependency,

clones can be promoted to
”ordinary” datasets

● Note that by promoting the
clone, it immediately starts
occupying space

zfs destroy tank/users/alice@mysecondbackup
cannot destroy 'tank/users/alice@mysecondbackup’:
snapshot has dependent clones
use '-R' to destroy the following datasets:
tank/users/eve

zfs list tank/users/eve
NAME USED AVAIL REFER MOUNTPOINT
tank/users/eve 0 984G 105M /tank/users/eve

zfs promote tank/users/eve

zfs list tank/users/eve
NAME USED AVAIL REFER MOUNTPOINT
tank/users/eve 189M 984G 105M /tank/users/eve

交大資工系資訊中心
Computer Center of Department of Computer Science, NCTU

Self-healing data

68

69

Traditional mirroring

Application

Filesystem

xxVM mirror

1. Application issue a read.
Mirror reads the first disk,
which has a corrupt block.
It can’t tell

Application

Filesystem

xxVM mirror

2. Volume manager passed
bas block up to filesystem.
If it’s a metadata block, the
filesystem panics. If not...

Application

Filesystem

xxVM mirror

3. Filesystem returns bad
data to the application

70

Self-healing data in ZFS

Application

ZFS mirror

1. Application issue a read.
ZFS mirror tries the first disk.
Checksum reveals that the
block is corrupt on disk.

Application

ZFS mirror

2. ZFS tries the second disk.
Checksum indicates that the
block is good.

Application

ZFS mirror

3. ZFS returns good data to
the application and repairs
the damaged block on the
first disk.

71

Self-healing data demo
 Store some important data (1/2)
● We have created a redundant pool with two mirrored disks and

stored some important data on it
● We will be very sad if the data gets lost! :-(

zfs list tank
NAME USED AVAIL REFER MOUNTPOINT
tank 74K 984G 23K /tank

cp -a /some/important/data/ /tank/

zfs list tank
NAME USED AVAIL REFER MOUNTPOINT
tank 3.23G 981G 3.23G /tank

72

Self-healing data demo
 Store some important data (2/2)

zpool status tank
 pool: tank
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 tank ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 md0 ONLINE 0 0 0
 md1 ONLINE 0 0 0

errors: No known data errors

zpool list tank
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 1016G 3.51G 1012G - - 0% 0% 1.00x ONLINE -

73

Self-healing data demo
 Destroy one of the disks (1/2)
Caution!
This example can destroy data when used on the wrong device or a
non-ZFS filesystem!
Always check your backups!

zpool export tank
dd if=/dev/random of=/dev/md1 bs=1m count=200
zpool import tank

74

Self-healing data demo
 Destroy one of the disks (2/2)

zpool status tank
 pool: tank
 state: ONLINE
status: One or more devices has experienced an unrecoverable error. An
 attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors
 using 'zpool clear' or replace the device with 'zpool replace'.
 see: http://illumos.org/msg/ZFS-8000-9P
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 tank ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 md0 ONLINE 0 0 5
 md1 ONLINE 0 0 0

errors: No known data errors

75

Self-healing data demo
 Make sure everything is okay (1/3)

zpool scrub tank
zpool status tank
 pool: tank
 state: ONLINE
status: One or more devices has experienced an unrecoverable error. An
 attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors
 using 'zpool clear' or replace the device with 'zpool replace'.
 see: http://illumos.org/msg/ZFS-8000-9P
 scan: scrub in progress since Fri Oct 12 22:57:36 2018
 191M scanned out of 3.51G at 23.9M/s, 0h2m to go
 186M repaired, 5.32% done
config:

 NAME STATE READ WRITE CKSUM
 tank ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 md0 ONLINE 0 0 1.49K (repairing)
 md1 ONLINE 0 0 0

errors: No known data errors

76

Self-healing data demo
 Make sure everything is okay (2/3)

zpool status tank
 pool: tank
 state: ONLINE
status: One or more devices has experienced an unrecoverable error. An
 attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors
 using 'zpool clear' or replace the device with 'zpool replace'.
 see: http://illumos.org/msg/ZFS-8000-9P
 scan: scrub repaired 196M in 0h0m with 0 errors on Fri Oct 12 22:58:14 2018
config:

 NAME STATE READ WRITE CKSUM
 tank ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 md0 ONLINE 0 0 1.54K
 md1 ONLINE 0 0 0

errors: No known data errors

77

Self-healing data demo
 Make sure everything is okay (3/3)

zpool clear tank

zpool status tank
 pool: tank
 state: ONLINE
 scan: scrub repaired 196M in 0h0m with 0 errors on Fri Oct 12 22:58:14 2018
config:

 NAME STATE READ WRITE CKSUM
 tank ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 md0 ONLINE 0 0 0
 md1 ONLINE 0 0 0

errors: No known data errors

78

Self-healing data demo
 But what if it goes very wrong? (1/2)

zpool status
 pool: tank
 state: ONLINE
status: One or more devices has experienced an error resulting in data
 corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the
 entire pool from backup.
 see: http://illumos.org/msg/ZFS-8000-8A
 scan: scrub in progress since Fri Oct 12 22:46:01 2018
 498M scanned out of 3.51G at 99.6M/s, 0h0m to go
 19K repaired, 13.87% done
config:

 NAME STATE READ WRITE CKSUM
 tank ONLINE 0 0 1.48K
 mirror-0 ONLINE 0 0 2.97K
 md0 ONLINE 0 0 2.97K
 md1 ONLINE 0 0 2.97K

errors: 1515 data errors, use '-v' for a list

79

Self-healing data demo
 But what if it goes very wrong? (2/2)

zpool status –v
 pool: tank
 state: ONLINE
status: One or more devices has experienced an error resulting in data
 corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the
 entire pool from backup.
 see: http://illumos.org/msg/ZFS-8000-8A
 scan: scrub repaired 19K in 0h0m with 1568 errors on Fri Oct 12 22:46:25 2018
config:

 NAME STATE READ WRITE CKSUM
 tank ONLINE 0 0 1.53K
 mirror-0 ONLINE 0 0 3.07K
 md0 ONLINE 0 0 3.07K
 md1 ONLINE 0 0 3.07K

errors: Permanent errors have been detected in the following files:

 /tank/FreeBSD-11.2-RELEASE-amd64.vhd.xz
 /tank/base-amd64.txz
 /tank/FreeBSD-11.2-RELEASE-amd64-disc1.iso.xz
 /tank/intro_slides.pdf

交大資工系資訊中心
Computer Center of Department of Computer Science, NCTU

Deduplication

80

81

Duplication
● Intentional duplication

○ Backups, redundancy
● Unintentional duplication

○ Application caches
○ Temporary files
○ Node.js (Grrr!)

A B C D

D C A B

A C B D

A B C D

D C A B

A C B D

82

Deduplication
● Implemented at the block layer
● ZFS detects when it needs to

store an exact copy of a block
● Only a reference is written

rather than the entire block
● Can save a lot of disk space

A B C D

D C A B

A C B D

A B C D

D C A B

A C B D

A B C D

83

Deduplication
 Memory cost
● ZFS must keep a table of the checksums of every block it stores
● Depending on the blocksize, this table can grow very quickly
● Deduplication table must be fast to access or writes slow down
● Ideally, the deduplication table should fit in RAM
● Keeping a L2ARC on fast SSDs can reduce the cost somewhat

Rule of thumb:
5GB of RAM for each TB of data stored

84

Deduplication
 Is it worth it? (1/2)
● The ZFS debugger (zdb) can be used to evaluate if turning on

deduplication will save space in a pool
● In most workloads, compression will provide much more

significant savings than deduplication
● Consider whether the cost of RAM is worth it
● Also keep in mind that it is a lot easier and cheaper to add disks to a

system than it is to add memory

85

Deduplication Demo
Is it worth it? (2/2)

zdb -S tank
Simulated DDT histogram:

bucket allocated referenced
______ ______________________________ ______________________________
refcnt blocks LSIZE PSIZE DSIZE blocks LSIZE PSIZE DSIZE
------ ------ ----- ----- ----- ------ ----- ----- -----
 1 25.1K 3.13G 3.13G 3.13G 25.1K 3.13G 3.13G 3.13G
 2 1.48K 189M 189M 189M 2.96K 378M 378M 378M
 Total 26.5K 3.32G 3.32G 3.32G 28.0K 3.50G 3.50G 3.50G

dedup = 1.06, compress = 1.00, copies = 1.00, dedup * compress / copies = 1.06

86

Deduplication demo
 Control experiment (1/2)
zpool list tank
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 7.50G 79.5K 7.50G - - 0% 0% 1.00x ONLINE -

zfs get compression,dedup tank
NAME PROPERTY VALUE SOURCE
tank compression off default
tank dedup off default

for p in `seq 0 4`; do
> zfs create tank/ports/$p
> portsnap -d /tmp/portsnap -p /tank/ports/$p extract &
> done

zpool list tank
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 7.50G 2.14G 5.36G - - 3% 28% 1.00x ONLINE -

87

Deduplication demo
 Control experiment (2/2)
zdb -S tank
Simulated DDT histogram:

bucket allocated referenced
______ ______________________________ ______________________________
refcnt blocks LSIZE PSIZE DSIZE blocks LSIZE PSIZE DSIZE
------ ------ ----- ----- ----- ------ ----- ----- -----
 4 131K 374M 374M 374M 656K 1.82G 1.82G 1.82G
 8 2.28K 4.60M 4.60M 4.60M 23.9K 48.0M 48.0M 48.0M
 16 144 526K 526K 526K 3.12K 10.5M 10.5M 10.5M
 32 22 23.5K 23.5K 23.5K 920 978K 978K 978K
 64 2 1.50K 1.50K 1.50K 135 100K 100K 100K
 256 1 512 512 512 265 132K 132K 132K
 Total 134K 379M 379M 379M 685K 1.88G 1.88G 1.88G

dedup = 5.09, compress = 1.00, copies = 1.00, dedup * compress / copies = 5.09

88

Deduplication demo
 Enabling deduplication
zpool list tank
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 7.50G 79.5K 7.50G - - 0% 0% 1.00x ONLINE -

zfs get compression,dedup tank
NAME PROPERTY VALUE SOURCE
tank compression off default
tank dedup on default

for p in `seq 0 4`; do
> zfs create tank/ports/$p
> portsnap -d /tmp/portsnap -p /tank/ports/$p extract &
> done

zpool list tank
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 7.50G 670M 6.85G - - 6% 8% 5.08x ONLINE -

89

Deduplication demo
 Compare with compression
zpool list tank
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 7.50G 79.5K 7.50G - - 0% 0% 1.00x ONLINE -

zfs get compression,dedup tank
NAME PROPERTY VALUE SOURCE
tank compression gzip-9 local
tank dedup off default

for p in `seq 0 4`; do
> zfs create tank/ports/$p
> portsnap -d /tmp/portsnap -p /tank/ports/$p extract &
> done

zpool list tank
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 7.50G 752M 6.77G - - 3% 9% 1.00x ONLINE -

90

Deduplication
 Summary
● ZFS deduplication can save a lot of space under some workloads

but at the expense of a lot of memory
● Often, compression will give similar or better results
● Always check with zdb -S whether deduplication would be worth it

Control experiment 2.14G
Deduplication 670M
Compression 752M

交大資工系資訊中心
Computer Center of Department of Computer Science, NCTU

Performance Tuning

91

92

General tuning tips
● System memory
● Access time
● Dataset compression
● Deduplication
● ZFS send and receive

93

Random Access Memory
● ZFS performance depends on the amount of system

○ recommended minimum: 1GB
○ 4GB is ok
○ 8GB and more is good

94

Dataset Compression
● Save space
● Increase CPU usage
● Increase data throughput (density)

95

Deduplication
● Requires even more memory
● Increases CPU usage

96

ZFS send/recv
● Using buffer for large streams

○ misc/buffer
○ misc/mbuffer (network capable)

97

Database tuning
● For PostgreSQL and MySQL users recommend using a different

recordsize than default 128k.

● PostgreSQL: 8k
● MySQL MyISAM storage: 8k
● MySQL InnoDB storage: 16k

98

File Servers
● Disable access time
● Keep number of snapshots low
● Dedup only if you have lots of RAM
● For heavy write workloads move ZIL to separate SSD drives
● Optionally disable ZIL for datasets (beware consequences)

99

Webservers
● Disable redundant data caching

○ Apache
■ EnableMMAP Off
■ EnableSendfile Off

○ Nginx
■ Sendfile off

○ Lighttpd
■ server.network-backend="writev"

交大資工系資訊中心
Computer Center of Department of Computer Science, NCTU

Cache and Prefetch

100

101

ARC
● Adaptive Replacement Cache

○ Resides in system RAM
○ Major speedup to ZFS the size is auto-tuned
○ Default

■ arc max: memory size - 1GB
■ metadata limit: ¼ of arc_max
■ arc min: ½ of arc_meta_limit (but at least 16MB)

102

Tuning ARC
● Disable ARC on per-dataset level
● Maximum can be limited if you also run other things

● Increasing arc_meta_limit may help if working with (too) many
files

● http://www.krausam.de/?p=70

sysctl kstat.zfs.misc.arcstats.size
sysctl kstat.zfs.misc.arcstats.arc_meta_used
sysctl kstat.zfs.misc.arcstats.arc_meta_limit

sysctl vfs.zfs.arc_max
sysctl vfs.zfs.arc_free_target

http://www.krausam.de/?p=70

103

L2ARC
● L2 Adaptive Replacement Cache

○ is designed to run on fast block devices (SSD)
○ helps primarily read-intensive workloads
○ each device can be attached to only one ZFS pool

zpool add <pool name> cache <vdevs>
zpool add remove <pool name> <vdevs>

104

Tuning L2ARC
● Enable prefetch for streaming or serving of large files
● Configurable on per-dataset basis
● Turbo warm-up phase may require tuning (e.g. set to 16MB)

vfs.zfs.l2arc_noprefetch
vfs.zfs.l2arc_write_max
vfs.zfs.l2arc_write_boost

new names in openzfs
vfs.zfs.l2arc.noprefetch
vfs.zfs.l2arc.write_max
vfs.zfs.l2arc.write_boost

105

ZIL
● ZFS Intent Log

○ guarantees data consistency on fsync() calls
○ replays transaction in case of a panic or power failure
○ use small storage space on each pool by default

● To speed up writes, deploy zil on a separate log device(SSD)
● Per-dataset synchonocity behavior can be configured

○ # zfs set sync=[standard|always|disabled] dataset

106

File-level Prefetch (zfetch)
● Analyses read patterns of files
● Tries to predict next reads
● Loader tunable to enable/disable zfetch

○ vfs.zfs.prefetch_disable
○ vfs.zfs.prefetch.disable (openzfs)

107

Device-level Prefetch (vdev prefetch)
● reads data after small reads from pool devices
● useful for drives with higher latency
● consumes constant RAM per vdev
● is disabled by default
● Loader tunable to enable/disable vdev prefetch

○ vfs.zfs.vdev.cache.size=[bytes]

108

ZFS Statistics Tools
● # sysctl vfs.zfs
● # sysctl kstat.zfs
● using tools:

○ zfs-stats: analyzes settings and counters since boot
○ zfsf-mon: real-time statistics with averages

● Both tools are available in ports under sysutils/zfs-stats

109

References
● ZFS: The last word in filesystems (Jeff Bonwick & Bill Moore)
● ZFS tuning in FreeBSD (Martin Matuˇska):

○ Slide
■ http://blog.vx.sk/uploads/conferences/EuroBSDcon2012/zfs-tuning-hando

ut.pdf
○ Video

■ https://www.youtube.com/watch?v=PIpI7Ub6yjo
● Becoming a ZFS Ninja (Ben Rockwood):

○ http://www.cuddletech.com/blog/pivot/entry.php?id=1075
● ZFS Administration:

○ https://pthree.org/2012/12/14/zfs-administration-part-ix-copy-on-write

http://blog.vx.sk/uploads/conferences/EuroBSDcon2012/zfs-tuning-handout.pdf
http://blog.vx.sk/uploads/conferences/EuroBSDcon2012/zfs-tuning-handout.pdf
https://www.youtube.com/watch?v=PIpI7Ub6yjo
http://www.cuddletech.com/blog/pivot/entry.php?id=1075
https://pthree.org/2012/12/14/zfs-administration-part-ix-copy-on-write

110

References (c.)
● https://www.freebsd.org/doc/zh_TW/books/handbook/zfs-zfs.html
● "ZFS Mastery" books (Michael W. Lucas & Allan Jude)

○ FreeBSD Mastery: ZFS
○ FreeBSD Mastery: Advanced ZFS

● ZFS for Newbies (Dan Langille)
○ https://www.youtube.com/watch?v=3oG-1U5AI9A&list=PLskKNopggjc6NssLc8GEGSiFYJLY

dlTQx&index=20
● The future of OpenZFS and FreeBSD (Allan Jude)

○ https://www.youtube.com/watch?v=gmaHZBwDKho&list=PLskKNopggjc6NssLc8GEGSiFYJL
YdlTQx&index=23

● How ZFS snapshots really work (Matt Ahrens)
○ https://www.bsdcan.org/2019/schedule/events/1073.en.html

● An Introduction to the Implementation of ZFS (Kirk McKusick)
○ https://www.bsdcan.org/2015/schedule/events/525.en.html

● https://open-zfs.org
● Boot environments: bectl(8)

https://www.freebsd.org/doc/zh_TW/books/handbook/zfs-zfs.html
https://www.youtube.com/watch?v=3oG-1U5AI9A&list=PLskKNopggjc6NssLc8GEGSiFYJLYdlTQx&index=20
https://www.youtube.com/watch?v=3oG-1U5AI9A&list=PLskKNopggjc6NssLc8GEGSiFYJLYdlTQx&index=20
https://www.youtube.com/watch?v=gmaHZBwDKho&list=PLskKNopggjc6NssLc8GEGSiFYJLYdlTQx&index=23
https://www.youtube.com/watch?v=gmaHZBwDKho&list=PLskKNopggjc6NssLc8GEGSiFYJLYdlTQx&index=23
https://www.bsdcan.org/2019/schedule/events/1073.en.html
https://www.bsdcan.org/2015/schedule/events/525.en.html
https://open-zfs.org
https://www.freebsd.org/cgi/man.cgi?query=bectl(8)

