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Tmux
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Terminal Multiplexer
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What is tmux?
● Terminal Multiplexer

○ Allow open multiple tabs (multiple terminals)
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What is tmux?

Tmux Client

Tmux Server

SSH
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What is tmux?

Pane Pane

Pane

Session Window
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Why should I use tmux?
● Keep your working session alive
● By default, shell is terminated when connection is lost

○ Including any programs/editors opened
○ Any unsaved changes are discarded without warning

● tmux will not be terminated when connection is lost
○ Attach to previous sessions!
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Example screenshot of tmux

https://github.com/lctseng/Unix-User-Config/blob/master/.tmux.conf

https://github.com/lctseng/Unix-User-Config/blob/master/.tmux.conf
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Advantages of tmux
● Multiple sessions, windows, panes
● Keep the sessions, attach/detach anytime
● Powerful window division (panes)
● Share screen by attaching to the same session
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Start tmux
● tmux
● tmux attach [ -t <number> ]
● tmux detach
● tmux ls
● tmux kill-session [ <number> ]
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tmux 101
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Basic operations and configurations
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Session
● Create new session (open a new browser)

○ Execute outside of any tmux sessions
○ $ tmux

● Detach current session
○ When attached in a session
○ $ tmux detach
○ Or close the terminal directly 

● Attach to previous session
○ $ tmux attach
○ Attach only if previous sessions exist 
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Multiple sessions (1)
● Open multiple browsers
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Multiple sessions (2)
● Open multiple browsers
● List opened sessions

○ $ tmux list-sessions
0: 1 windows (created Sun Jun 16 18:49:57 2019) [128x38]
1: 3 windows (created Sun Jun 16 18:50:03 2019) [128x38]

● Attach to previous session by id
○ $ tmux attach -t session-id
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tmux - bindkey
● Operations start with a special key combination
● Default is C-b

○ Where C is Ctrl (control) 
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tmux - command
● Bindkey + :
● Open command prompt and execute tmux commands
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Bindkey - Window

bindkey 
(default is C-b)
//C == control

C new-window

N next-window

P previous-window

L last-window

<NUM> select-window -t := <NUM>

& confirm-before -p "kill-window #W? (y/n)" kill-window

, command-prompt -I "#W" "rename-window '%%'"

. command-prompt "move-window -t '%%'"
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Bindkey - Pane

bindkey 
(default is C-b)
//C == control

% split-window -h

“ split-window

arrow-key select-pane

alt + arrow-kwy resize-pane

x confirm-before -p "kill-pane #P? 
(y/n)" kill-pane

{ swap-pane -U

} swap-pane -D
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tmux - bindkey
● bindkey + ?
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Configuration - tmux.conf
● ~/.tmux.conf
● design yourself style
● colorful
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Configuration - tmux.conf
● ~/.tmux.conf
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Configuration - bindkey
● ~/.tmux.conf

○ bind-key ( alias: bind )
○ C ( alias: <Ctrl> )
○ M ( alias: <Alt> )

● bind-key  <key>  <command>
○ -T key-table ( default table is prefix ) 
○ -n : alias for -T root    => Don’t need to press C-b first
○ -r : repeat
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Configuration - set
● ~/.tmux.conf

○ set-window-option ( alias: setw ) 
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Configuration - set
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tmux - share session
● Both side can edit and execute commands
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Reference
● tmux (1)
● tmux shortcuts & cheatsheet

○ https://gist.github.com/MohamedAlaa/2961058
● tmux brief introduction (chinese)

○ https://5xruby.tw/posts/tmux/

https://www.freebsd.org/cgi/man.cgi?tmux
https://gist.github.com/MohamedAlaa/2961058
https://5xruby.tw/posts/tmux/
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Appendix: tmux v.s. screen
tmux screen

Window Split
top-down & left-right top-down only (default)

different sessions can have 
different schemes

scheme must shared by all 
sessions

Session

switch between sessions 
without detach

detach first then re-attach 
another session

multiple clients can attach to 
same session

one session for one client only 
(force detach)

Profile
.tmux .screenrc

highly customizable less than tmux
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Git

27

One of the most popular Version Control Systems
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Version Control Systems (VCS)
● Also known as Source Code Management (SCM)
● Records changes to a set of files over time so that you can recall 

specific versions later.
● Easy for developing, finding bug, blame someone else, ...
● Popular tools

○ Git, Subversion (svn), Mercurial (hg)
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Version Control Systems (VCS)
● Web hosting

○ Backup projects
○ Collaborating
○ Commercial providers

■ Github, Gitlab, Bitbucket
○ Self-hosted 

■ git.cs.nctu.edu.tw



● Copy-paste manually

30

Without VCS

# 2015-11-10
cp -r project project.bak
# 2015-11-11
cp -r project project.bak1
# 2015-11-12
cp -r project project.bak2
# 2015-11-15
cp -r project project.bak3
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How VCS works
● In addition to your files, VCS stores extra information under your 

project folder
○ Hidden folders

■ .git for Git
■ .hg for Mercurial

○ Previous versions of files (compressed)
○ Remote repository information
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Types of VCS (1)
● Local VCS

○ All versions are in local 
○ Cannot share with others
○ No remote backup

● Example
○ Manually copy-paste
○ Git/Hg without setting 

remote upstream
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Types of VCS (2)
● Centralized VCS

○ User can checkout one 
specific version 

○ Remote server has all 
versions

○ Lost access to other 
versions if network is down

○ Lost all versions if server is 
down

● Example
○ Subversion
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Types of VCS (3)
● Distributed VCS

○ Every node has complete 
copy of versions

○ Offline working
○ Synchronization

■ Usually using a server as 
the source of truth

● Example
○ Git, Mercurial



35

Git
● Distributed VCS
● History

○ Linus Torvalds (the creator of Linux)
○ Source Control Management for Linux Kernel

■ ~2005
● Using BitKeeper (commercial software)

■ 2005~
● Developed Git
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Git
● Snapshots, not differences

○ All versions of all files are stored independently
○ Easy for checking out to any version 

● Nearly every operation is local
● Git has integrity

○ SHA checking
● Git generally only adds data

○ Delete
■ Store the file in .git folder and hide from your workspace

○ Modify
■ Backup the original file to .git folder
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Git
● Git is very powerful, with many features
● In this class, we only talk about the very simple one
● We will cover

○ How to install and create repos
○ How to add files/make changes 
○ How to create commits
○ How to navigate between versions
○ How to push to remote

● Will NOT cover
○ branching (git branch, git merge, ...)
○ Anything else

Homework 2
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Git - installation
● FreeBSD

○ pkg install git
● Other OS

○ https://git-scm.com/book/en/v2/Getting-Started-Installing-Git 

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
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Git - getting started
● Developer information

○ In terminal
■ $ git config --global user.email "you@example.com"

■ $ git config --global user.name "Name"

○ Or edit manually in ~/.gitconfig
● Create a new repository

○ $ mkdir hw2

○ $ cd hw2

○ $ git init

■ Initialize an empty project with .git directory
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Git - the three stages
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Git - file lifecycle
● The lifecycle of the status of your files
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Git - basic operations (1)
● git add

○ Add file contents to the index (staged)
○ $ git add file1 file2...

○ $ git add directory

○ $ git add .
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Git - basic operations (2)
● git commit

○ Confirm your staged change and create a commit (revision)
○ Will open default text editor for commit message
○ Useful options 

■ -a: stage all modified and deleted path (git add)
■ -m MSG: use MSG as commit message without opening editors 
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Git - basic operations (3)
● git status

○ View the working directory status of current project

$ git status -s
M README.md         # updated in index
D run.sh            # deleted from index
R src/main.js       # renamed in index
A src/index.html    # added to index
?? src/README.md    # untracked
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Git - basic operations (4)
● git diff

○ Compare change with the previous version
■ https://git-scm.com/docs/git-diff 

$ git diff                      
diff --git a/README.md b/README.md
index 76f177f..f4986c2 100644
--- a/README.md
+++ b/README.md
@@ -1 +1 @@
-# Hi
+# Hello

https://git-scm.com/docs/git-diff
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Git - basic operations (5)
● git log

○ View the commit log (history)
○ Change the log format

■ http://gits-scm.com/docs/pretty-formats 

$ git log

commit 2f2bd00051fbd4d4978b7e96508b97950d6e60b1
Author: lctseng lctseng@cs.nctu.edu.tw
Date:   Thu Oct 8 17:10:13 2020 +0800

    Initial commit

http://gits-scm.com/docs/pretty-formats
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Git - basic operations (6)
● git checkout

○ Go to other revisions or branches
○ $ git checkout <commit-id>

○ Go back to latest change:
■ $ git checkout master

$ git status   
On branch master

$ git checkout 2f2bd00     
Note: checking out '2f2bd00'.

$ git status    
HEAD detached at 2f2bd00
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Git - basic operations (7)
● git bisect

○ Finding problematic commit
○ Flow (similar to binary search)

■ $ git bisect start

■ Define endpoints
● $ git bisect good <good-commit-id>

● $ git bisect bad <bad-commit-id>

■ After that, git will checkout to some commit
■ If that commit is good

● $ git bisect good

■ If that commit is bad
● $ git bisect bad

■ After several rounds, git will checkout to first bad commit
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Git - push to remote
● git remote

○ Manage the remote repository
○ $ git remote add origin 

https://git.cs.nctu.edu.tw/lctseng/sa-demo.git

■ Set the remote server & repo for push/pull
● git push

○ $ git push -u origin master

■ Push to the remote and create the remote master branch
■ Later on, you can simply use "git push"

https://git.cs.nctu.edu.tw/lctseng/sa-demo.git
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Git - pull from remote
● git clone

○ Download the full repository from remote server
○ $ git clone https://github.com/curl/curl.git

● git pull
○ Pull the latest revisions from remote in an existing repository


