
國立陽明交通大學資工系資訊中心
Computer Center, Department of Computer Science, NYCU

Utilities - tmux & git

1

lctseng (2019-2021, CC BY-SA)
wnlee and others (1996-2018)

國立陽明交通大學資工系資訊中心
Computer Center, Department of Computer Science, NYCU

Tmux

2

Terminal Multiplexer

3

What is tmux?
● Terminal Multiplexer

○ Allow open multiple tabs (multiple terminals)

4

What is tmux?

Tmux Client

Tmux Server

SSH

5

What is tmux?

Pane Pane

Pane

Session Window

6

Why should I use tmux?
● Keep your working session alive
● By default, shell is terminated when connection is lost

○ Including any programs/editors opened
○ Any unsaved changes are discarded without warning

● tmux will not be terminated when connection is lost
○ Attach to previous sessions!

7

Example screenshot of tmux

https://github.com/lctseng/Unix-User-Config/blob/master/.tmux.conf

https://github.com/lctseng/Unix-User-Config/blob/master/.tmux.conf

8

Advantages of tmux
● Multiple sessions, windows, panes
● Keep the sessions, attach/detach anytime
● Powerful window division (panes)
● Share screen by attaching to the same session

9

Start tmux
● tmux
● tmux attach [-t <number>]
● tmux detach
● tmux ls
● tmux kill-session [<number>]

國立陽明交通大學資工系資訊中心
Computer Center, Department of Computer Science, NYCU

tmux 101

10

Basic operations and configurations

11

Session
● Create new session (open a new browser)

○ Execute outside of any tmux sessions
○ $ tmux

● Detach current session
○ When attached in a session
○ $ tmux detach
○ Or close the terminal directly

● Attach to previous session
○ $ tmux attach
○ Attach only if previous sessions exist

12

Multiple sessions (1)
● Open multiple browsers

13

Multiple sessions (2)
● Open multiple browsers
● List opened sessions

○ $ tmux list-sessions
0: 1 windows (created Sun Jun 16 18:49:57 2019) [128x38]
1: 3 windows (created Sun Jun 16 18:50:03 2019) [128x38]

● Attach to previous session by id
○ $ tmux attach -t session-id

14

tmux - bindkey
● Operations start with a special key combination
● Default is C-b

○ Where C is Ctrl (control)

15

tmux - command
● Bindkey + :
● Open command prompt and execute tmux commands

16

Bindkey - Window

bindkey
(default is C-b)
//C == control

C new-window

N next-window

P previous-window

L last-window

<NUM> select-window -t := <NUM>

& confirm-before -p "kill-window #W? (y/n)" kill-window

, command-prompt -I "#W" "rename-window '%%'"

. command-prompt "move-window -t '%%'"

17

Bindkey - Pane

bindkey
(default is C-b)
//C == control

% split-window -h

“ split-window

arrow-key select-pane

alt + arrow-kwy resize-pane

x confirm-before -p "kill-pane #P?
(y/n)" kill-pane

{ swap-pane -U

} swap-pane -D

18

tmux - bindkey
● bindkey + ?

19

Configuration - tmux.conf
● ~/.tmux.conf
● design yourself style
● colorful

20

Configuration - tmux.conf
● ~/.tmux.conf

21

Configuration - bindkey
● ~/.tmux.conf

○ bind-key (alias: bind)
○ C (alias: <Ctrl>)
○ M (alias: <Alt>)

● bind-key <key> <command>
○ -T key-table (default table is prefix)
○ -n : alias for -T root => Don’t need to press C-b first
○ -r : repeat

22

Configuration - set
● ~/.tmux.conf

○ set-window-option (alias: setw)

23

Configuration - set

24

tmux - share session
● Both side can edit and execute commands

25

Reference
● tmux (1)
● tmux shortcuts & cheatsheet

○ https://gist.github.com/MohamedAlaa/2961058
● tmux brief introduction (chinese)

○ https://5xruby.tw/posts/tmux/

https://www.freebsd.org/cgi/man.cgi?tmux
https://gist.github.com/MohamedAlaa/2961058
https://5xruby.tw/posts/tmux/

26

Appendix: tmux v.s. screen
tmux screen

Window Split
top-down & left-right top-down only (default)

different sessions can have
different schemes

scheme must shared by all
sessions

Session

switch between sessions
without detach

detach first then re-attach
another session

multiple clients can attach to
same session

one session for one client only
(force detach)

Profile
.tmux .screenrc

highly customizable less than tmux

國立陽明交通大學資工系資訊中心
Computer Center, Department of Computer Science, NYCU

Git

27

One of the most popular Version Control Systems

28

Version Control Systems (VCS)
● Also known as Source Code Management (SCM)
● Records changes to a set of files over time so that you can recall

specific versions later.
● Easy for developing, finding bug, blame someone else, ...
● Popular tools

○ Git, Subversion (svn), Mercurial (hg)

29

Version Control Systems (VCS)
● Web hosting

○ Backup projects
○ Collaborating
○ Commercial providers

■ Github, Gitlab, Bitbucket
○ Self-hosted

■ git.cs.nctu.edu.tw

● Copy-paste manually

30

Without VCS

2015-11-10
cp -r project project.bak
2015-11-11
cp -r project project.bak1
2015-11-12
cp -r project project.bak2
2015-11-15
cp -r project project.bak3

31

How VCS works
● In addition to your files, VCS stores extra information under your

project folder
○ Hidden folders

■ .git for Git
■ .hg for Mercurial

○ Previous versions of files (compressed)
○ Remote repository information

32

Types of VCS (1)
● Local VCS

○ All versions are in local
○ Cannot share with others
○ No remote backup

● Example
○ Manually copy-paste
○ Git/Hg without setting

remote upstream

33

Types of VCS (2)
● Centralized VCS

○ User can checkout one
specific version

○ Remote server has all
versions

○ Lost access to other
versions if network is down

○ Lost all versions if server is
down

● Example
○ Subversion

34

Types of VCS (3)
● Distributed VCS

○ Every node has complete
copy of versions

○ Offline working
○ Synchronization

■ Usually using a server as
the source of truth

● Example
○ Git, Mercurial

35

Git
● Distributed VCS
● History

○ Linus Torvalds (the creator of Linux)
○ Source Control Management for Linux Kernel

■ ~2005
● Using BitKeeper (commercial software)

■ 2005~
● Developed Git

36

Git
● Snapshots, not differences

○ All versions of all files are stored independently
○ Easy for checking out to any version

● Nearly every operation is local
● Git has integrity

○ SHA checking
● Git generally only adds data

○ Delete
■ Store the file in .git folder and hide from your workspace

○ Modify
■ Backup the original file to .git folder

37

Git
● Git is very powerful, with many features
● In this class, we only talk about the very simple one
● We will cover

○ How to install and create repos
○ How to add files/make changes
○ How to create commits
○ How to navigate between versions
○ How to push to remote

● Will NOT cover
○ branching (git branch, git merge, ...)
○ Anything else

Homework 2

38

Git - installation
● FreeBSD

○ pkg install git
● Other OS

○ https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

39

Git - getting started
● Developer information

○ In terminal
■ $ git config --global user.email "you@example.com"

■ $ git config --global user.name "Name"

○ Or edit manually in ~/.gitconfig
● Create a new repository

○ $ mkdir hw2

○ $ cd hw2

○ $ git init

■ Initialize an empty project with .git directory

40

Git - the three stages

41

Git - file lifecycle
● The lifecycle of the status of your files

42

Git - basic operations (1)
● git add

○ Add file contents to the index (staged)
○ $ git add file1 file2...

○ $ git add directory

○ $ git add .

43

Git - basic operations (2)
● git commit

○ Confirm your staged change and create a commit (revision)
○ Will open default text editor for commit message
○ Useful options

■ -a: stage all modified and deleted path (git add)
■ -m MSG: use MSG as commit message without opening editors

44

Git - basic operations (3)
● git status

○ View the working directory status of current project

$ git status -s
M README.md # updated in index
D run.sh # deleted from index
R src/main.js # renamed in index
A src/index.html # added to index
?? src/README.md # untracked

45

Git - basic operations (4)
● git diff

○ Compare change with the previous version
■ https://git-scm.com/docs/git-diff

$ git diff
diff --git a/README.md b/README.md
index 76f177f..f4986c2 100644
--- a/README.md
+++ b/README.md
@@ -1 +1 @@
-# Hi
+# Hello

https://git-scm.com/docs/git-diff

46

Git - basic operations (5)
● git log

○ View the commit log (history)
○ Change the log format

■ http://gits-scm.com/docs/pretty-formats

$ git log

commit 2f2bd00051fbd4d4978b7e96508b97950d6e60b1
Author: lctseng lctseng@cs.nctu.edu.tw
Date: Thu Oct 8 17:10:13 2020 +0800

 Initial commit

http://gits-scm.com/docs/pretty-formats

47

Git - basic operations (6)
● git checkout

○ Go to other revisions or branches
○ $ git checkout <commit-id>

○ Go back to latest change:
■ $ git checkout master

$ git status
On branch master

$ git checkout 2f2bd00
Note: checking out '2f2bd00'.

$ git status
HEAD detached at 2f2bd00

48

Git - basic operations (7)
● git bisect

○ Finding problematic commit
○ Flow (similar to binary search)

■ $ git bisect start

■ Define endpoints
● $ git bisect good <good-commit-id>

● $ git bisect bad <bad-commit-id>

■ After that, git will checkout to some commit
■ If that commit is good

● $ git bisect good

■ If that commit is bad
● $ git bisect bad

■ After several rounds, git will checkout to first bad commit

49

Git - push to remote
● git remote

○ Manage the remote repository
○ $ git remote add origin

https://git.cs.nctu.edu.tw/lctseng/sa-demo.git

■ Set the remote server & repo for push/pull
● git push

○ $ git push -u origin master

■ Push to the remote and create the remote master branch
■ Later on, you can simply use "git push"

https://git.cs.nctu.edu.tw/lctseng/sa-demo.git

50

Git - pull from remote
● git clone

○ Download the full repository from remote server
○ $ git clone https://github.com/curl/curl.git

● git pull
○ Pull the latest revisions from remote in an existing repository

