
國立陽明交通大學資工系資訊中心
Computer Center of Department of Computer Science, NYCU

Controlling Processes

tsaimh (2022, CC BY-SA)
wangth (2017-2021, CC BY-SA)
? (1996-2016)

2

Handbook and Manual pages
● Official guide and be found at

○ https://www.freebsd.org/doc/en/books/handbook/basics-

processes.html

○ https://www.freebsd.org/doc/zh_TW/books/handbook/basics-

processes.html

https://www.freebsd.org/doc/en/books/handbook/basics-processes.html
https://www.freebsd.org/doc/zh_TW/books/handbook/basics-processes.html

Program to Process
● Program is dead

○ Just lie on disk
○ "grep" is a program

■ /usr/bin/grep

■ $ file /usr/bin/grep

● ELF 32-bit LSB executable
● Executable and Linkable Format

● When you execute it
○ It becomes a process

● Process is alive
○ It resides in memory

getty

init

login

sh

grep

PID 1

PID 424
exec

PID 424
exec

PID 424
exec

PID 563
exec

Forkinit

Forksh
3

4

Components of a Process
● An address space in memory

○ Code and data of this process

● A set of data structures within the kernel
○ Used to monitor, schedule, trace, …., this process

■ Owner, Group (Credentials)

■ Current status

■ VM space

■ Execution priority (scheduling info)

■ Information of used resource

■ Resource limits

■ Syscall vector

■ Signal actions

5

Attributes of the Process
● PID, PPID

○ Process ID and parent process ID

● UID, EUID
○ User ID and Effective user ID

● GID, EGID
○ Group ID and Effective group ID

● Niceness
○ The suggested priority of this process

6

Attributes of the Process –
PID and PPID

● PID – process id
○ Unique number assigned

for each process in

increasing order when

they are created

● PPID – parent PID
○ The PID of the parent

from which it was cloned

○ UNIX uses fork-and-exec

model to create new

process

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main(){
int pid, i;

pid = fork();
if(pid ==0) {

for (int i=0; i<5; i++)
{

printf("I am child, pid is %d, ppid is %d\n",
getpid(), getppid());

sleep(1);
}
exit(1);

}else if (pid >0) {
for (int i=0; i<5; i++)
{

printf("I am parent, pid is %d, ppid is %d\n",
getpid(),getppid());

sleep(1);
}

}else if (pid < 0)
printf("Something wrong while forking\n");

return 0;
}

I am parent, pid is 1485, ppid is 1125
I am child, pid is 1486, ppid is 1485
I am parent, pid is 1485, ppid is 1125
I am child, pid is 1486, ppid is 1485
I am parent, pid is 1485, ppid is 1125
I am child, pid is 1486, ppid is 1485
I am child, pid is 1486, ppid is 1485
I am parent, pid is 1485, ppid is 1125
I am child, pid is 1486, ppid is 1485
I am parent, pid is 1485, ppid is 1125

7

Process Lifecycle
● fork

○ child has the same program context – fork(2)

● exec
○ child use exec to change the program context – execve(2)

● exit
○ child use _exit to tell kernel that it is ready to die and this death

should be acknowledged by the child’s parent – _exit(2)

● wait
○ parent use wait to wait for child’s death

○ If parent died before child, this orphan process will have init as it’s

new parent – wait(2)

https://www.freebsd.org/cgi/man.cgi?fork(2)
https://www.freebsd.org/cgi/man.cgi?execve(2)
https://www.freebsd.org/cgi/man.cgi?_exit(2)
https://www.freebsd.org/cgi/man.cgi?wait(2)

8

Attributes of the process –
UID、GID、EUID and EGID

● UID, GID, EUID, EGID
○ The effective uid and gid can be used to enable or restrict the

additional permissions
○ Effective uid will be set to

■ Real uid if setuid bit is off

■ The file owner’s uid if setuid bit is on

○ Example

■ /etc/master.passwd is "root read-write only"
■ /usr/bin/passwd is a "setuid root" program

% ls –al /etc | grep passwd
-rw------- 1 root wheel 2946 Sep 24 00:26 master.passwd
-rw-r--r-- 1 root wheel 2706 Sep 24 00:26 passwd

% ls -al /usr/bin/passwd
-r-sr-xr-x 2 root wheel 5860 Sep 17 15:19 passwd

9

Signal
● A way of telling a process something has happened
● Signals can be sent

○ Among processes as a means of communication
○ By the terminal driver to kill, interrupt, or suspend process
■ <Ctrl-C>、<Ctrl-Z>

■ bg, fg

○ By the administrator to achieve various results
■With kill(1)

○ By the kernel when a process violate the rules
■ divide by zero

■ Illegal memory access

https://www.freebsd.org/cgi/man.cgi?kill(1)

10

Signal – Actions when receiving signal
● Depend on whether there is a designated handler routine for that

signal
○ If yes, the handler is called

○ If no, the kernel takes some default action

● "Catching" the signal
○ Specify a handler routine for a signal within a program

● Two ways to prevent signals from arriving
○ Ignored

■ Just discard it and there is no effect to process
○ Blocked

■ Queue for delivery until unblocked
■ The handler for a newly unblocked signal is called only once

11

Signal – FreeBSD signals
● signal(3) or see /usr/include/sys/signal.h
● FreeBSD

Name Description Default Catch Block Dump Core

1 SIGHUP Hangup Terminate ✔ ✔ ❌

2 SIGINT Interrupt (^C) Terminate ✔ ✔ ❌

3 SIGQUIT Quit Terminate ✔ ✔ ✔

9 SIGKILL Kill Terminate ❌ ❌ ❌

10 SIGBUS Bus error Terminate ✔ ✔ ✔

11 SIGSEGV Segmentation fault Terminate ✔ ✔ ✔

15 SIGTERM Soft. termination Terminate ✔ ✔ ❌

17 SIGSTOP Stop Stop ❌ ❌ ❌

18 SIGTSTP Stop from tty (^Z) Stop ✔ ✔ ❌

19 SIGCONT Continue after stop Ignore ✔ ❌ ❌

12

Signal – Send signals: kill
● kill(1) – terminate or signal a process
● $ kill [-signal] pid

○ Ex.
■ First, find out the pid you want to kill

● (ps, top, sockstat, lsof…)
■ $ kill -l (list all available signals)
■ $ kill 49222
■ $ kill -TERM 49222
■ $ kill -15 49222

○ killall(1)
■ kill processes by name
■ $ killall tcsh
■ $ killall -u tsaimh

the same

https://www.freebsd.org/cgi/man.cgi?kill(1)
https://www.freebsd.org/cgi/man.cgi?killall(1)

13

Niceness
● How kindly of you when contending CPU time

○ High nice value ➔ low priority

○ Related to CPU time quantum

● Inherent Property
○ A newly created process inherits the nice value of its parent

■ Prevent processes with low priority from bearing high-priority children
● Root has complete freedom in setting nice value

○ Use "nice" to start a high-priority shell to beat berserk process

14

Niceness – nice and renice
● nice(1) format

○ OS nice : $ /usr/bin/nice [range] utility [argument]

○ csh nice(built-in) : $ nice [range] utility [argument]

■ $ nice +10 ps -l
● renice(8) format

○ $ renice [prio | -n incr] [-p pid] [-g gid] [-u user]

■ $ renice 15 -u chwong
System Prio. Range OS nice csh nice renice

FreeBSD -20 ~ 20 -incr | -n incr +prio | -prio prio | -n incr

Red Hat -20 ~ 20 -incr | -n incr +prio | -prio prio

Solaris 0 ~ 39 -incr | -n incr +incr | -incr prio | -n incr

SunOS -20 ~ 19 -incr +prio | -prio prio

https://www.freebsd.org/cgi/man.cgi?nice(1)
https://www.freebsd.org/cgi/man.cgi?renice(8)

15

cpuset command (1/2)
● A system may have more than one CPU core
● How many CPU resource a process can use
● cpuset(1)

https://www.freebsd.org/cgi/man.cgi?cpuset(1)

16

cpuset command (2/2)
● To see how many CPUs on your machine

○ $ cpuset -g

● Run commands with less CPUs
○ $ cpuset -l cpus cmd

● Change number of CPUs for current processes
○ $ cpuset -l cpus -p pid

● Combine with nice
○ $ cpuset -l 8-15 /usr/bin/nice -n 20 cmd

$ cpuset -g
pid -1 mask: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

$ cpuset -l 8-15 ./hw1.out

$ cpuset -l 8-15 -p 5566

17

Process States
● man "ps" and see "state" keyword

State Meaning

I Idle (20+ second)

R Runnable

S Sleeping (~20 second)

T Stopped

Z Zombie

D in Disk

18

ps command (BSD、Linux)

$ ps
PID TT STAT TIME COMMAND

52363 p0 Ss 0:00.01 -tcsh (tcsh)
52369 p0 R+ 0:00.00 ps

$ ps aux
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
tsaimh 52362 0.0 0.4 6536 3852 ?? S 5:02PM 0:00.01 sshd: tsaimh@ttyp0 (sshd)

root 52380 0.0 0.3 3756 3224 ?? Ss 5:08PM 0:00.00 sendmail: accepting connections (s
smmsp 52384 0.0 0.3 3644 2968 ?? Ss 5:08PM 0:00.00 sendmail: Queue runner@00:30:00 fo

$ ps auxww
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
tsaimh 52362 0.0 0.4 6536 3864 ?? S 5:02PM 0:00.02 sshd: tsaimh@ttyp0 (sshd)
root 52380 0.0 0.3 3756 3224 ?? Ss 5:08PM 0:00.00 sendmail: accepting connections
(sendmail)
smmsp 52384 0.0 0.3 3644 2968 ?? Ss 5:08PM 0:00.00 sendmail: Queue runner@00:30:00 for
/var/spool/clientmqueue (sendmail)

● ps

● ps aux

● ps auxww

19

ps command –
Explanation of ps –aux (BSD、Linux)

Field Contents

USER Username of process's owner

PID Process ID

%CPU Percentage of the CPU this process is using

%MEM Percentage of the real memory this process is using

VSZ Virtual size of process, in kilobytes

RSS Resident set size (number of 1K pages in memory)

TT Control terminal ID

STAT

Current process status:

● R = Runnable
● I = Sleeping (> 20 sec)
● S = Sleeping (< 20 Sec)

● T = Stopped
● D = In disk (or short-term) wait
● Z = Zombie

Additional Flags:
● > = Process has higher than normal priority
● N = Process has lower than normal priority
● < = Process is exceeding soft limit on memory ues
● A = Process has requested random page replacement
● S = Process has asked for FIFO page replacement

● V = Process is suspended during a vfork
● E = Process is trying to exit
● L = Some pages are locked in core
● X = Process is being traced ro debugged
● s = Process is a session leader (head of controller terminal)

● W = Process is swapped out
● + = Process is in the foreground of its control terminal

STARTED Time the process was started

TIME CPU time the process has consumed

COMMAND Command name and arguments

20

ps command (BSD、Linux)
*Use these options in shell scripts

$ ps -j
USER PID PPID PGID SID JOBC STAT TT TIME COMMAND
tsaimh 52363 52362 52363 52363 0 Ss p0 0:00.03 -tcsh (tcsh)
tsaimh 52458 52363 52458 52363 1 R+ p0 0:00.00 ps -j

● ps -j

● ps -o

● ps -L

$ ps -o uid,pid,ppid,%cpu,%mem,command
UID PID PPID %CPU %MEM COMMAND

1001 52363 52362 0.0 0.3 -tcsh (tcsh)
1001 52462 52363 0.0 0.1 ps -o uid,pid,ppid,%cpu,%mem,command

$ ps -L
%cpu %mem acflag acflg args blocked caught comm command cpu cputime
emuletime f flags ignored inblk inblock jid jobc ktrace label lim lockname
login logname lstart lwp majflt minflt msgrcv msgsnd mwchan ni nice nivcsw
nlwp nsignals nsigs nswap nvcsw nwchan oublk oublock paddr pagein pcpu
pending pgid pid pmem ppid pri re rgid rgroup rss rtprio ruid ruser sid sig
sigcatch sigignore sigmask sl start stat state svgid svuid tdev time tpgid
tsid tsiz tt tty ucomm uid upr uprocp user usrpri vsize vsz wchan xstat

21

top command

● Various usage
○ top -q run top and renice it to -20
○ top -u don’t map uid to username
○ top -U username show process owned by user

● Interactive command
○ o change display order (cpu, res, size, time)
○ u show only processes owned by user ("+" means all)
○ m show IO information
○ ? Listing available options

last pid: 52477; load averages: 0.01, 0.05, 0.02 up 0+19:38:37 17:23:38
29 processes: 1 running, 28 sleeping
CPU states: 0.4% user, 0.0% nice, 0.0% system, 0.0% interrupt, 99.6% idle
Mem: 19M Active, 308M Inact, 113M Wired, 88K Cache, 111M Buf, 556M Free
Swap: 1024M Total, 1024M Free

PID USERNAME THR PRI NICE SIZE RES STATE TIME WCPU COMMAND
697 root 1 76 0 3784K 2728K select 0:02 0.00% sshd
565 root 1 76 0 1468K 1068K select 0:00 0.00% syslogd
704 root 1 8 0 1484K 1168K nanslp 0:00 0.00% cron

22

htop command

● A better top
○ Install it from sysutils/htop

23

Runaway process
● Processes that use up excessive system resource or just go

berserk
○ kill -TERM for unknown process
○ renice it to a higher nice value for reasonable process

國立陽明交通大學資工系資訊中心
Computer Center of Department of Computer Science, NYCU

Appendix

Fork Bomb

25

Fork Bomb
● A process forking out of control

Cited from wiki

http://zh.wikipedia.org/wiki/Fork%E7%82%B8%E5%BC%B9

26

Fork Bomb
● A process forking out of control

27

Fork Bomb –
How to create a fork bomb

● C/C++

● Perl

● Bash (Shell script)

● Windows

DON’T DO THAT!!!!

#include <unistd.h>

int main(void) {
while(1)

fork();
return 0;

}

fork while fork

%0 | %0

:(){ :|:& };:

Define function
forkbomb() {

Run twice with pipe
forkbomb|forkbomb &

}
;
Start the fork bomb
forkbomb

28

Fork Bomb (1/2)
● How to deal with fork bomb

○ Just kill all of them

○ $ killall -KILL bombName

● When you have no more resource to fork your shell
○ $ exec killall -KILL bombName

○ That shell will become "killall", and never goes back

● "killall" isn’t an atomic command
○ More bombs may be created when killing them

○ Run multiple "killall"

29

Fork Bomb (2/2)
● Prevent fork bomb

○ Limit the maximum number of processes for a specific user

● /etc/login.conf

