
國立陽明交通大學資工系資訊中心
Computer Center, Department of Computer Science, NYCU

ZFS
The Last Word in Filesystem

1

lwhsu (2019-2022, CC BY)
tzute (2018)
? (?-2018)

Besides authors listed in the cover, this deck contains the slides from

following people:

● Allan Jude <allanjude@FreeBSD.org>

○ ZFS history and OpenZFS

● Benedict Reuschling <bcr@FreeBSD.org>

○ ZFS introduction and zfs/zpool command usage

● Philip Paeps <philip@FreeBSD.org>

○ ZFS introduction and zfs/zpool command usage

2

Copyright

● Redundant Array of Independent Disks

○ Old name: Inexpensive

● A group of drives combined into one

3

RAID

● JBOD

● RAID 0

● RAID 1

● RAID 5

● RAID 6

● RAID 10

● RAID 50

● RAID 60

4

Common RAID types

● https://en.wikipedia.org/wiki/RAID#Weaknesses

○ Correlated failures

■ Use different batches of drivers!

○ Unrecoverable read errors during rebuild

○ Increasing rebuild time and failure probability

○ Atomicity: including parity inconsistency due to system crashes

○ Write-cache reliability

● Know the limitations and make decision for your scenario

5

Issues of RAID

https://en.wikipedia.org/wiki/RAID#Weaknesses

● Linux – mdadm

● https://raid.wiki.kernel.org/

● FreeBSD – GEOM classes

● https://man.freebsd.org/geom

6

Software Implementations

國立陽明交通大學資工系資訊中心
Computer Center, Department of Computer Science, NYCU

Here comes ZFS

7

● Originally developed at Sun Microsystems starting in 2001

● Open source under CDDL in 2005

● Oracle bought Sun in 2010, and close sourd further work

● illumos, a fork of the last open source version of (Open)Solaris

became the new upstream for work on ZFS

● ZFS was ported to many platforms

○ FreeBSD 2007

○ Linux 2008

● The OpenZFS project founded to coordinate development across

platforms

8

Evolution of ZFS

● https://openzfs.org

● https://openzfs.github.io/openzfs-docs/

● https://github.com/openzfs/zfs

● All platforms can get the new feature faster

● OS dependent and OS independent codes in one repository

○ The old model (OS independent only) doesn’t work well

● Working on standardize the command line interface where it has

diverged across platforms

● More effort into effective naming of tunables (closer to user)

9

OpenZFS

https://openzfs.org
https://openzfs.github.io/openzfs-docs/
https://github.com/openzfs/zfs

● OpenZFS is now available on almost every platform

○ illumos (OmniOS, OpenIndiana, SmartOS, DilOS, Tribblix)

○ FreeBSD (FreeNAS, XigmaNAS, pfSense, etc.)

○ NetBSD

○ Linux

○ macOS

○ Windows

○ OSv

10

OpenZFS Platforms

● Filesystem is always consistent

○ Never overwrite an existing block (transactional Copy-on-Write)

○ State atomically advance at checkpoints

○ Metadata redundancy and data checksums

● Snapshots (ro) and clones (rw) are cheap and plentiful

● Flexible configuration

○ Stripe, mirror, single/double/triple parity RAIDZ

● Fast remote replication and backups

● Scalable (the first 128 bit filesystem)

● SSD and memory friendly

● Easy administration (2 commands: zpool & zfs)

11

Why ZFS?

https://www.bsdcan.org/2015/schedule/events/525.en.html

● Disks

● Controllers

● Cables

● Firmware

● Device drivers

● Non-ECC memory

12

End-to-end data integrity

● Checksums are stored with the

data blocks

● Any self-consistent block will

have a correct checksum

● Can’t even detect stray writes

● Inherently limited to single file

systems or volumes

13

Disk block checksums

Disk block checksums

only validate media

Data

Checksum

Data

Checksum

Data

Checksum

✔ Bit rot

● Phantom writes

● Misdirected reads and

writes

● DMA parity errors

● Driver bugs

● Accidental overwrite

● Checksums are stored in parent

block pointers

● Fault isolation between data and

checksum

● Entire storage pool is a self-

validating Merkle tree

14

ZFS data authentication

ZFS data authentication

validates entire I/O path

Address Address

Checksum Checksum

Address Address

Checksum Checksum

Data Data

✔ Bit rot

✔ Phantom writes

✔ Misdirected reads and writes

✔ DMA parity errors

✔ Driver bugs

✔ Accidental overwrite

● Single partition or volume per

filesystem

● Each filesystem has limited I/O

bandwidth

● Filesystems must be manually

resized

● Storage is fragmented

15

Traditional storage architecture

FileSystem

1GB Disk

Volume

(2GB concat)

Lower

1GB

FileSystem

Upper

1GB

Volume

(2GB stripe)

Even

1GB

FileSystem

Odd

1GB

Volume

(1GB mirror)

Left

1GB

FileSystem

Right

1GB

● No partitions required

● Storage pool grows automatically

● All I/O bandwidth is always available

● All storage in the pool is shared

16

ZFS pooled storage

ZFS ZFS ZFS ZFS

Storage Pool

Disk Disk Disk

17

Copy-on-write transactions
1. Initial consistent state 2. COW some blocks

3. COW indirect blocks 4. Rewrite uberblock (atomic)

● Only two commands:

○ Storage pools: zpool

■ Add and replace disks

■ Resize pools

○ Filesystems: zfs

■ Quotas, reservations, etc.

■ Compression and deduplication

■ Snapshots and clones

■ atime, readonly, etc.

18

Simple administration

國立陽明交通大學資工系資訊中心
Computer Center, Department of Computer Science, NYCU

Storage Pools

19

● ZFS is not just a filesystem

● ZFS = filesystem + volume manager

● Works out of the box

● "Z"uper "Z"imple to create

● Controlled with single command

○ zpool

● zpool(8)

● zpoolconcepts(8)

20

ZFS Pool

● Pool is create from “Virtual Devices” (vdevs)

● disk: A real disk (typically under /dev)

● file: A file

● mirror: Two or more disks mirrored together

● raidz1/2/3: Three or more disks in RAID5/6*

● spare: A spare drive

● log: A write log device (ZIL SLOG; typically SSD)

● cache: A read cache device (L2ARC; typically SSD)

21

ZFS Pools Components

● Dynamic Stripe: Intelligent RAID 0

○ zfs copies=1 | 2 | 3

● Mirror: RAID 1

● Raidz1: Improved from RAID5 (parity)

● Raidz2: Improved from RAID6 (double parity)

● Raidz3: Triple parity

22

RAID in ZFS

● To create a storage pool named "tank" from a single disk:

○ zpool create tank /dev/md0

■ ZFS can use disks directly. There is no need to create partitions or

volumes.

● After creating a storage pool, ZFS will automatically:

○ Create a filesystem with the same name (e.g. tank)

○ Mount the filesystem under that name (e.g. /tank)

● The storage is immediately available

23

Storage pools
Creating storage pools (1/2)

● All configuration is stored with the storage pool and persists across

reboots.

● No need to edit /etc/fstab.

24

Storage pools
Creating storage pools (2/2)

mount | grep tank

ls -al /tank

ls: /tank: No such file or directory

zpool create tank /dev/md0

mount | grep tank

tank on /tank (zfs, local, nfsv4acls)

ls -al /tank

total 9

drwxr-xr-x 2 root wheel 2 Oct 12 12:17 .

drwxr-xr-x 23 root wheel 28 Oct 12 12:17 ..

reboot

[...]

mount | grep tank

tank on /tank (zfs, local, nfsv4acls)

zpool list

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

tank 1016G 83K 1016G - - 0% 0% 1.00x ONLINE -

zpool status

pool: tank

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

md0 ONLINE 0 0 0

errors: No known data errors

25

Storage pools
Displaying pool status

● ZFS contains a built-in tool to display I/O statistics.

● Given an interval in seconds, statistics will be displayed continuously until

the user interrupts with Ctrl+C.

● Use -v (verbose) to display more detailed statistics.

26

Storage pools
Displaying I/O statistics

zpool iostat 5

capacity operations bandwidth

pool alloc free read write read write

---------- ----- ----- ----- ----- ----- -----

tank 83K 1016G 0 0 234 841

tank 83K 1016G 0 0 0 0

zpool iostat -v

capacity operations bandwidth

pool alloc free read write read write

---------- ----- ----- ----- ----- ----- -----

tank 83K 1016G 0 0 206 739

md0 83K 1016G 0 0 206 739

---------- ----- ----- ----- ----- ----- -----

● Destroying storage pools is a constant time operation. If you want

to get rid of your data, ZFS will help you do it very quickly!

● All data on a destroyed pool will be irretrievably lost.

27

Storage pools
Destroying storage pools

time zpool create tank /dev/md0

0.06 real 0.00 user 0.02 sys

time zpool destroy tank

0.09 real 0.00 user 0.00 sys

● A pool with just one disk does

not provide any redundancy,

capacity or even adequate

performance.

● Stripes offer higher capacity

and better performance (reading

will be parallelised) but they

provide no redundancy.

28

Storage pools
Creating stripes

zpool create tank /dev/md0 /dev/md1

zpool status

pool: tank

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

md0 ONLINE 0 0 0

md1 ONLINE 0 0 0

errors: No known data errors

zpool list

NAME SIZE ALLOC FREE CAP DEDUP HEALTH

tank 1.98T 86K 1.98T 0% 1.00x ONLINE

● Mirrored storage pools provide

redundancy against disk failures

and better read performance than

single-disk pools.

● However, mirrors only have 50%

of the capacity of the underlying

disks.

29

Storage pools
Creating mirrors (RAID-1)

zpool create tank mirror /dev/md0 /dev/md1

zpool status

pool: tank

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

md0 ONLINE 0 0 0

md1 ONLINE 0 0 0

errors: No known data errors

zpool list

NAME SIZE ALLOC FREE CAP DEDUP HEALTH

tank 1016G 93K 1016G 0% 1.00x ONLINE

● raidz is a variation on RAID-5

with single-, double-, or triple

parity.

● A raidz group with N disks of

size X with P parity disks can

hold approximately (𝑁 − 𝑃) ∗ 𝑋

bytes and can withstand P

device(s) failing before data

integrity is compromised.

30

Storage pools
Creating raidz groups

zpool create tank \

> raidz1 /dev/md0 /dev/md1 /dev/md2 /dev/md3

zpool status

pool: tank

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

raidz1-0 ONLINE 0 0 0

md0 ONLINE 0 0 0

md1 ONLINE 0 0 0

md2 ONLINE 0 0 0

md3 ONLINE 0 0 0

errors: No known data errors

● Single disks, stripes, mirrors

and raidz groups can be

combined in a single storage

pool

● ZFS will complain when adding

devices would make the pool

less redundant

● zpool add log/cache/spare

31

Storage pools
Combining vdev types

zpool create tank mirror /dev/md0 /dev/md1

zpool add tank /dev/md2

invalid vdev specification

use '-f' to override the following errors:

mismatched replication level:

pool uses mirror and new vdev is disk

zpool create tank \

> raidz2 /dev/md0 /dev/md1 /dev/md2 /dev/md3

zpool add tank \

> raidz /dev/md4 /dev/md5 /dev/md6

invalid vdev specification

use '-f' to override the following errors:

mismatched replication level:

pool uses 2 device parity and new vdev uses 1

● More devices can be added to a

storage pool to increase

capacity without downtime.

● Data will be striped across the

disks, increasing performance,

but there will be no

redundancy.

● If any disk fails, all data is lost!

32

Storage pools
Increasing storage pool capacity

zpool create tank /dev/md0

zpool add tank /dev/md1

zpool list

NAME SIZE ALLOC FREE CAP DEDUP HEALTH

tank 1.98T 233K 1.98T 0% 1.00x ONLINE

zpool status

pool: tank

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

md0 ONLINE 0 0 0

md1 ONLINE 0 0 0

errors: No known data errors

● A storage pool consisting of only one device can be converted to a

mirror.

● In order for the new device to mirror the data of the already

existing device, the pool needs to be “resilvered”.

● This means that the pool synchronises both devices to contain the

same data at the end of the resilver operation.

● During resilvering, access to the pool will be slower, but there will

be no downtime.

33

Storage pools
Creating a mirror from a single-disk pool (1/4)

34

Storage pools
Creating a mirror from a single-disk pool (2/4)

zpool create tank /dev/md0

zpool status

pool: tank

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

md0 ONLINE 0 0 0

errors: No known data errors

zpool list

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

tank 1016G 93K 1016G - - 0% 0% 1.00x ONLINE -

● zpool attach

35

Storage pools
Creating a mirror from a single-disk pool (3/4)

36

Storage pools
Creating a mirror from a single-disk pool (4/4)

● zpool(8)

○ zpool list

■ list all the zpool

○ zpool status [pool name]

■ show status of zpool

○ zpool export/import [pool name]

■ export or import given pool

○ zpool set/get <properties/all>

■ set or show zpool properties

○ zpool online/offline <pool name> <vdev>

■ set an device in zpool to online/offline state

○ zpool attach/detach <pool name> <device> <new device>

■ attach a new device to an zpool/detach a device from zpool

○ zpool replace <pool name> <old device> <new device>

■ replace old device with new device 37

Zpool Commands

○ zpool scrub

■ try to discover silent error or hardware failure

○ zpool history [pool name]

■ show all the history of zpool

○ zpool add <pool name> <vdev>

■ add additional capacity into pool

○ zpool create/destroy

■ create/destory zpool

https://www.freebsd.org/cgi/man.cgi?zpool(8)

zpool get all zroot

NAME PROPERTY VALUE SOURCE

zroot size 460G -

zroot capacity 4% -

zroot altroot - default

zroot health ONLINE -

zroot guid 13063928643765267585 default

zroot version - default

zroot bootfs zroot/ROOT/default local

zroot delegation on default

zroot autoreplace off default

zroot cachefile - default

zroot failmode wait default

zroot listsnapshots off default

zroot feature@async_destroy enabled local

zroot feature@device_removal enabled local

38

Zpool Properties

● ZFS reserve 1/64 of pool capacity for safe-guard to protect CoW

● RAIDZ1 Space = Total Drive Capacity -1 Drive

● RAIDZ2 Space = Total Drive Capacity -2 Drives

● RAIDZ3 Space = Total Drive Capacity -3 Drives

● Dynamic Stripe of 4* 100GB= 400 / 1.016= ~390GB

● RAIDZ1 of 4* 100GB = 300GB - 1/64th= ~295GB

● RAIDZ2 of 4* 100GB = 200GB - 1/64th= ~195GB

● RAIDZ2 of 10* 100GB = 800GB - 1/64th= ~780GB

http://cuddletech.com/blog/pivot/entry.php?id=1013 39

Zpool Sizing

http://cuddletech.com/blog/pivot/entry.php?id=1013

國立陽明交通大學資工系資訊中心
Computer Center, Department of Computer Science, NYCU

ZFS Dataset

40

● Three forms:

○ filesystem: just like traditional filesystem

○ volume: block device

○ snapshot: read-only version of a file system or volume at a given

point of time.

● Nested

● Each dataset has associated properties that can be inherited by sub-

filesystems

● Controlled with single command:

○ zfs(8)

41

ZFS Datasets

https://www.freebsd.org/cgi/man.cgi?zfs(8)

● Create new dataset with

○ zfs create <pool name>/<dataset name>(/<dataset name>/…)

● New dataset inherits properties of parent dataset

42

Filesystem Datasets

● Block storage

● Located at /dev/zvol/<pool name>/<dataset>

● Useful for

○ iSCSI

○ Other non-zfs local filesystem

○ Virtual Machine image

● Support "thin provisioning" ("sparse volume")

43

Volume Datasets (ZVols)

$ zfs get all zroot

NAME PROPERTY VALUE SOURCE

zroot type filesystem -

zroot creation Mon Jul 21 23:13 2014 -

zroot used 22.6G -

zroot available 423G -

zroot referenced 144K -

zroot compressratio 1.07x -

zroot mounted no -

zroot quota none default

zroot reservation none default

zroot recordsize 128K default

zroot mountpoint none local

zroot sharenfs off default

44

Dataset properties

● zfs(8)

○ zfs set/get <prop. / all> <dataset>

■ set properties of datasets

○ zfs create <dataset>

■ create new dataset

○ zfs destroy

■ destroy datasets/snapshots/clones..

○ zfs snapshot

■ create snapshots

○ zfs rollback

■ rollback to given snapshot

45

zfs commands

○ zfs promote

■ promote clone to the orgin of

the filesystem

○ zfs send/receive

■ send/receive data stream of the

snapshot

https://www.freebsd.org/cgi/man.cgi?zfs(8)

國立陽明交通大學資工系資訊中心
Computer Center, Department of Computer Science, NYCU

Snapshots

46

● Read-only copy of a dataset or volume

● Useful for file recovery or full dataset rollback

● Denoted by @ symbol

● Snapshots are extremely fast (-er than deleting data!)

● Snapshots occupy (almost) no space until the original data start to diverge

● How ZFS snapshots really work (Matt Ahrens)

○ https://www.bsdcan.org/2019/schedule/events/1073.en.html

47

Snapshot

Snapshot root
Live root

https://www.bsdcan.org/2019/schedule/events/1073.en.html

● A snapshot only needs an identifier

○ Can be anything you like!

○ A timestamp is traditional

○ But you can use more memorable identifiers too…

48

Snapshots
Creating and listing snapshots (1/2)

zfs snapshot tank/users/alice@myfirstbackup

zfs list -t snapshot

NAME USED AVAIL REFER MOUNTPOINT

tank/users/alice@myfirstbackup 0 - 23K -

zfs list -rt all tank/users/alice

NAME USED AVAIL REFER MOUNTPOINT

tank/users/alice 23K 984G 23K /tank/users/alice

tank/users/alice@myfirstbackup 0 - 23K -

● Snapshots save only the changes between the time they were

created and the previous (if any) snapshot

● If data doesn’t change, snapshots occupy zero space

49

Snapshots
Creating and listing snapshots (2/2)

echo hello world > /tank/users/alice/important_data.txt

zfs snapshot tank/users/alice@mysecondbackup

zfs list -rt all tank/users/alice

NAME USED AVAIL REFER MOUNTPOINT

tank/users/alice 36.5K 984G 23.5K /tank/users/alice

tank/users/alice@myfirstbackup 13K - 23K -

tank/users/alice@mysecondbackup 0 - 23.5K -

● ZFS can display the differences between snapshots

50

Snapshots
Differences between snapshots

touch /tank/users/alice/empty

rm /tank/users/alice/important_data.txt

zfs diff tank/users/alice@mysecondbackup

M /tank/users/alice/

- /tank/users/alice/important_data.txt

+ /tank/users/alice/empty

Character Type of change

+ File was added

- File was deleted

M File was modified

R File was renamed

● Snapshots can be rolled back to undo changes

● All files changed since the snapshot was created will be discarded

51

Snapshots
Rolling back snapshots (1/2)

echo hello_world > important_file.txt

echo goodbye_cruel_world > also_important.txt

zfs snapshot tank/users/alice@myfirstbackup

rm *

ls

zfs rollback tank/users/alice@myfirstbackup

ls

also_important.txt important_file.txt

● By default, the latest snapshot

is rolled back. To roll back

an older snapshot, use -r

● Note that intermediate

snapshots will be destroyed

● ZFS will warn about this

52

Snapshots
Rolling back snapshots (2/2)

touch not_very_important.txt

touch also_not_important.txt

ls

also_important.txt important_file.txt

also_not_important.txt not_very_important.txt

zfs snapshot tank/users/alice@mysecondbackup

zfs diff tank/users/alice@myfirstbackup \

> tank/users/alice@mysecondbackup

M /tank/users/alice/

+ /tank/users/alice/not_very_important.txt

+ /tank/users/alice/also_not_important.txt

zfs rollback tank/users/alice@myfirstbackup

zfs rollback -r tank/users/alice@myfirstbackup

ls

also_important.txt important_file.txt

● Sometimes, we only want to

restore a single file, rather than

rolling back an entire snapshot

● ZFS keeps snapshots in a very

hidden .zfs/snapshots directory

○ It’s like magic :-)

○ Set snapdir=visible to unhide it

● Remember: snapshots are read-

only. Copying data to the

magic directory won’t work!

53

Snapshots
Restoring individual files

ls

also_important.txt

important_file.txt

rm *

ls

ls .zfs/snapshot/myfirstbackup

also_important.txt

important_file.txt

cp .zfs/snapshot/myfirstbackup/* .

ls

also_important.txt

important_file.txt

● Clones represent a writeable copy of a read-only snapshot

● Like snapshots, they occupy no space until they start to diverge

54

Snapshots
Cloning snapshots

zfs list -rt all tank/users/alice

NAME USED AVAIL REFER MOUNTPOINT

tank/users/alice 189M 984G 105M /tank/users/alice

tank/users/alice@mysecondbackup 0 - 105M -

zfs clone tank/users/alice@mysecondbackup tank/users/eve

zfs list tank/users/eve

NAME USED AVAIL REFER MOUNTPOINT

tank/users/eve 0 984G 105M /tank/users/eve

● Snapshots cannot be deleted

while clones exist

● To remove this dependency,

clones can be promoted to

”ordinary” datasets

● Note that by promoting the

clone, it immediately starts

occupying space

55

Snapshots
Promoting clones

zfs destroy tank/users/alice@mysecondbackup

cannot destroy 'tank/users/alice@mysecondbackup’:

snapshot has dependent clones

use '-R' to destroy the following datasets:

tank/users/eve

zfs list tank/users/eve

NAME USED AVAIL REFER MOUNTPOINT

tank/users/eve 0 984G 105M /tank/users/eve

zfs promote tank/users/eve

zfs list tank/users/eve

NAME USED AVAIL REFER MOUNTPOINT

tank/users/eve 189M 984G 105M /tank/users/eve

• Send snapshot

• Receive dataset

• with snapshot

• Incremental

• -i

• Resume

• -t (token)

• Send to file

• Encryption

• Data Streaming

56

ZFS Snapshots send/receive

(sender)

zfs snapshot zroot/j/jails/kenobi@20201108-1

(receiver)

nc -N -l 5000 | zfs recv -Fuv zroot/j/jails/Kenobi

(sender)

zfs send -Rv zroot/j/jails/kenobi@20201108-1 | nc -N receiver 5000

(receiver)

nc -N -l 5000 | zfs recv -Fuv zroot/j/jails/Kenobi

(sender)

zfs snapshot zroot/j/jails/kenobi@20201108-2

zfs send -Rv -i zroot/j/jails/kenobi@20201108-1 \

zroot/j/jails/kenobi@20201108-2 | nc -N receiver 5000

國立陽明交通大學資工系資訊中心
Computer Center, Department of Computer Science, NYCU

Self-healing data

57

58

Traditional mirroring

Application

Filesystem

xxVM mirror

1. Application issue a read.

Mirror reads the first disk,

which has a corrupt block.

It can’t tell

Application

Filesystem

xxVM mirror

2. Volume manager passed

bas block up to filesystem.

If it’s a metadata block, the

filesystem panics. If not...

Application

Filesystem

xxVM mirror

3. Filesystem returns bad

data to the application

59

Self-healing data in ZFS

Application

ZFS mirror

1. Application issue a read.

ZFS mirror tries the first disk.

Checksum reveals that the

block is corrupt on disk.

Application

ZFS mirror

2. ZFS tries the second disk.

Checksum indicates that the

block is good.

Application

ZFS mirror

3. ZFS returns good data to

the application and repairs

the damaged block on the

first disk.

● We have created a redundant pool with two mirrored disks and

stored some important data on it

● We will be very sad if the data gets lost! :-(

60

Self-healing data demo
Store some important data (1/2)

zfs list tank

NAME USED AVAIL REFER MOUNTPOINT

tank 74K 984G 23K /tank

cp -a /some/important/data/ /tank/

zfs list tank

NAME USED AVAIL REFER MOUNTPOINT

tank 3.23G 981G 3.23G /tank

zpool status tank

pool: tank

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

md0 ONLINE 0 0 0

md1 ONLINE 0 0 0

errors: No known data errors

zpool list tank

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

tank 1016G 3.51G 1012G - - 0% 0% 1.00x ONLINE -

61

Self-healing data demo
Store some important data (2/2)

Caution!

This example can destroy data when used on the wrong device or a

non-ZFS filesystem!

Always check your backups!

62

Self-healing data demo
Destroy one of the disks (1/2)

zpool export tank

dd if=/dev/random of=/dev/md1 bs=1m count=200

zpool import tank

zpool status tank

pool: tank

state: ONLINE

status: One or more devices has experienced an unrecoverable error. An

attempt was made to correct the error. Applications are unaffected.

action: Determine if the device needs to be replaced, and clear the errors

using 'zpool clear' or replace the device with 'zpool replace'.

see: http://illumos.org/msg/ZFS-8000-9P

scan: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

md0 ONLINE 0 0 5

md1 ONLINE 0 0 0

errors: No known data errors

63

Self-healing data demo
Destroy one of the disks (2/2)

zpool scrub tank

zpool status tank

pool: tank

state: ONLINE

status: One or more devices has experienced an unrecoverable error. An

attempt was made to correct the error. Applications are unaffected.

action: Determine if the device needs to be replaced, and clear the errors

using 'zpool clear' or replace the device with 'zpool replace'.

see: http://illumos.org/msg/ZFS-8000-9P

scan: scrub in progress since Fri Oct 12 22:57:36 2018

191M scanned out of 3.51G at 23.9M/s, 0h2m to go

186M repaired, 5.32% done

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

md0 ONLINE 0 0 1.49K (repairing)

md1 ONLINE 0 0 0

errors: No known data errors
64

Self-healing data demo
Make sure everything is okay (1/3)

zpool status tank

pool: tank

state: ONLINE

status: One or more devices has experienced an unrecoverable error. An

attempt was made to correct the error. Applications are unaffected.

action: Determine if the device needs to be replaced, and clear the errors

using 'zpool clear' or replace the device with 'zpool replace'.

see: http://illumos.org/msg/ZFS-8000-9P

scan: scrub repaired 196M in 0h0m with 0 errors on Fri Oct 12 22:58:14 2018

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

md0 ONLINE 0 0 1.54K

md1 ONLINE 0 0 0

errors: No known data errors

65

Self-healing data demo
Make sure everything is okay (2/3)

zpool clear tank

zpool status tank

pool: tank

state: ONLINE

scan: scrub repaired 196M in 0h0m with 0 errors on Fri Oct 12 22:58:14

2018

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

md0 ONLINE 0 0 0

md1 ONLINE 0 0 0

errors: No known data errors

66

Self-healing data demo
Make sure everything is okay (3/3)

zpool status

pool: tank

state: ONLINE

status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.

action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.

see: http://illumos.org/msg/ZFS-8000-8A

scan: scrub in progress since Fri Oct 12 22:46:01 2018

498M scanned out of 3.51G at 99.6M/s, 0h0m to go

19K repaired, 13.87% done

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 1.48K

mirror-0 ONLINE 0 0 2.97K

md0 ONLINE 0 0 2.97K

md1 ONLINE 0 0 2.97K

errors: 1515 data errors, use '-v' for a list 67

Self-healing data demo
But what if it goes very wrong? (1/2)

zpool status –v

pool: tank

state: ONLINE

status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.

action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.

see: http://illumos.org/msg/ZFS-8000-8A

scan: scrub repaired 19K in 0h0m with 1568 errors on Fri Oct 12 22:46:25 2018

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 1.53K

mirror-0 ONLINE 0 0 3.07K

md0 ONLINE 0 0 3.07K

md1 ONLINE 0 0 3.07K

errors: Permanent errors have been detected in the following files:

/tank/FreeBSD-11.2-RELEASE-amd64.vhd.xz

/tank/base-amd64.txz

/tank/FreeBSD-11.2-RELEASE-amd64-disc1.iso.xz

/tank/intro_slides.pdf 68

Self-healing data demo
But what if it goes very wrong? (2/2)

國立陽明交通大學資工系資訊中心
Computer Center, Department of Computer Science, NYCU

Deduplication

69

● Intentional duplication

○ Backups, redundancy

● Unintentional duplication

○ Application caches

○ Temporary files

○ Node.js (Grrr!)

70

Duplication

A B C D

D C A B

A C B D

A B C D

D C A B

A C B D

● Implemented at the block layer

● ZFS detects when it needs to

store an exact copy of a block

● Only a reference is written

rather than the entire block

● Can save a lot of disk space

71

Deduplication A B C D

D C A B

A C B D

A B C D

D C A B

A C B D

A B C D

● ZFS must keep a table of the checksums of every block it stores

● Depending on the blocksize, this table can grow very quickly

● Deduplication table must be fast to access or writes slow down

● Ideally, the deduplication table should fit in RAM

● Keeping a L2ARC on fast SSDs can reduce the cost somewhat

Rule of thumb:

5GB of RAM for each TB of data stored

72

Deduplication

Memory cost

● The ZFS debugger (zdb) can be used to evaluate if turning on

deduplication will save space in a pool

● In most workloads, compression will provide much more

significant savings than deduplication

● Consider whether the cost of RAM is worth it

● Also keep in mind that it is a lot easier and cheaper to add disks to

a system than it is to add memory

73

Deduplication
Is it worth it? (1/2)

zdb -S tank

Simulated DDT histogram:

bucket allocated referenced

______ ______________________________ ______________________________

refcnt blocks LSIZE PSIZE DSIZE blocks LSIZE PSIZE DSIZE

------ ------ ----- ----- ----- ------ ----- ----- -----

1 25.1K 3.13G 3.13G 3.13G 25.1K 3.13G 3.13G 3.13G

2 1.48K 189M 189M 189M 2.96K 378M 378M 378M

Total 26.5K 3.32G 3.32G 3.32G 28.0K 3.50G 3.50G 3.50G

dedup = 1.06, compress = 1.00, copies = 1.00, dedup * compress / copies = 1.06

74

Deduplication Demo
Is it worth it? (2/2)

zpool list tank

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

tank 7.50G 79.5K 7.50G - - 0% 0% 1.00x ONLINE -

zfs get compression,dedup tank

NAME PROPERTY VALUE SOURCE

tank compression off default

tank dedup off default

for p in `seq 0 4`; do

> zfs create tank/ports/$p

> portsnap -d /tmp/portsnap -p /tank/ports/$p extract &

> done

zpool list tank

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

tank 7.50G 2.14G 5.36G - - 3% 28% 1.00x ONLINE -

75

Deduplication demo
Control experiment (1/2)

zdb -S tank

Simulated DDT histogram:

bucket allocated referenced

______ ______________________________ ______________________________

refcnt blocks LSIZE PSIZE DSIZE blocks LSIZE PSIZE DSIZE

------ ------ ----- ----- ----- ------ ----- ----- -----

4 131K 374M 374M 374M 656K 1.82G 1.82G 1.82G

8 2.28K 4.60M 4.60M 4.60M 23.9K 48.0M 48.0M 48.0M

16 144 526K 526K 526K 3.12K 10.5M 10.5M 10.5M

32 22 23.5K 23.5K 23.5K 920 978K 978K 978K

64 2 1.50K 1.50K 1.50K 135 100K 100K 100K

256 1 512 512 512 265 132K 132K 132K

Total 134K 379M 379M 379M 685K 1.88G 1.88G 1.88G

dedup = 5.09, compress = 1.00, copies = 1.00, dedup * compress / copies = 5.09

76

Deduplication demo
Control experiment (2/2)

zpool list tank

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

tank 7.50G 79.5K 7.50G - - 0% 0% 1.00x ONLINE -

zfs get compression,dedup tank

NAME PROPERTY VALUE SOURCE

tank compression off default

tank dedup on default

for p in `seq 0 4`; do

> zfs create tank/ports/$p

> portsnap -d /tmp/portsnap -p /tank/ports/$p extract &

> done

zpool list tank

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

tank 7.50G 670M 6.85G - - 6% 8% 5.08x ONLINE -

77

Deduplication demo
Enabling deduplication

zpool list tank

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

tank 7.50G 79.5K 7.50G - - 0% 0% 1.00x ONLINE -

zfs get compression,dedup tank

NAME PROPERTY VALUE SOURCE

tank compression gzip-9 local

tank dedup off default

for p in `seq 0 4`; do

> zfs create tank/ports/$p

> portsnap -d /tmp/portsnap -p /tank/ports/$p extract &

> done

zpool list tank

NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT

tank 7.50G 752M 6.77G - - 3% 9% 1.00x ONLINE -

78

Deduplication demo
Compare with compression

● ZFS deduplication can save a lot of space under some workloads

but at the expense of a lot of memory

● Often, compression will give similar or better results

● Always check with zdb -S whether deduplication would be worth it

79

Deduplication
Summary

Control experiment 2.14G

Deduplication 670M

Compression 752M

國立陽明交通大學資工系資訊中心
Computer Center, Department of Computer Science, NYCU

Performance Tuning

80

● System memory

● Access time

● Dataset compression

● Deduplication

● ZFS send and receive

81

General tuning tips

● ZFS performance depends on the amount of system

○ recommended minimum: 1GB

○ 4GB is ok

○ 8GB and more is good

82

Random Access Memory

● Save space

● Increase CPU usage

● Increase data throughput (density)

83

Dataset Compression

● Requires even more memory

● Increases CPU usage

84

Deduplication

● Using buffer for large streams

○ misc/buffer

○ misc/mbuffer (network capable)

○ Use nc(1) in a secure environment

85

ZFS send/recv

● For PostgreSQL and MySQL users recommend using a different

recordsize than default 128k.

● PostgreSQL: 8k

● MySQL MyISAM storage: 8k

● MySQL InnoDB storage: 16k

86

Database tuning

● Disable access time

● Keep number of snapshots low

● Dedup only if you have lots of RAM

● For heavy write workloads move ZIL to separate SSD drives

● Optionally disable ZIL for datasets (beware consequences)

87

File Servers

● Disable redundant data caching

○ Apache

■ EnableMMAP Off

■ EnableSendfile Off

○ Nginx

■ Sendfile off

○ Lighttpd

■ server.network-backend="writev"

88

Webservers

國立陽明交通大學資工系資訊中心
Computer Center, Department of Computer Science, NYCU

Cache and Prefetch

89

● Adaptive Replacement Cache

○ Resides in system RAM

○ Major speedup to ZFS the size is auto-tuned

○ Default

■ arc max: memory size - 1GB

■ metadata limit: ¼ of arc_max

■ arc min: ½ of arc_meta_limit (but at least 16MB)

90

ARC

● Disable ARC on per-dataset level

● Maximum can be limited if you also run other things

● Increasing arc_meta_limit may help if working with (too) many

files

● http://www.krausam.de/?p=70

91

Tuning ARC

sysctl kstat.zfs.misc.arcstats.size

sysctl kstat.zfs.misc.arcstats.arc_meta_used

sysctl kstat.zfs.misc.arcstats.arc_meta_limit

sysctl vfs.zfs.arc_max

sysctl vfs.zfs.arc_free_target

http://www.krausam.de/?p=70

● L2 Adaptive Replacement Cache

○ is designed to run on fast block devices (SSD)

○ helps primarily read-intensive workloads

○ each device can be attached to only one ZFS pool

92

L2ARC

zpool add <pool name> cache <vdevs>

zpool add remove <pool name> <vdevs>

● Enable prefetch for streaming or serving of large files

● Configurable on per-dataset basis

● Turbo warm-up phase may require tuning (e.g. set to 16MB)

93

Tuning L2ARC

vfs.zfs.l2arc.noprefetch

vfs.zfs.l2arc.write_max

vfs.zfs.l2arc.write_boost

old names in legacy zfs

vfs.zfs.l2arc_noprefetch

vfs.zfs.l2arc_write_max

vfs.zfs.l2arc_write_boost

● ZFS Intent Log

○ guarantees data consistency on fsync() calls

○ replays transaction in case of a panic or power failure

○ use small storage space on each pool by default

● To speed up writes, deploy zil on a separate log device(SSD)

● Per-dataset synchonocity behavior can be configured

○ # zfs set sync=[standard|always|disabled] dataset

94

ZIL

● Analyses read patterns of files

● Tries to predict next reads

● Loader tunable to enable/disable zfetch

○ vfs.zfs.prefetch_disable

○ vfs.zfs.prefetch.disable (OpenZFS)

95

File-level Prefetch (zfetch)

● reads data after small reads from pool devices

● useful for drives with higher latency

● consumes constant RAM per vdev

● is disabled by default

● Loader tunable to enable/disable vdev prefetch

○ vfs.zfs.vdev.cache.size=[bytes]

96

Device-level Prefetch (vdev prefetch)

● # sysctl vfs.zfs

● # sysctl kstat.zfs

● using tools:

○ zfs-stats: analyzes settings and counters since boot

○ zfsf-mon: real-time statistics with averages

● Both tools are available in ports under sysutils/zfs-stats

97

ZFS Statistics Tools

● ZFS: The last word in filesystems (Jeff Bonwick & Bill Moore)

● ZFS tuning in FreeBSD (Martin Matuˇska):

○ Slide

■ http://blog.vx.sk/uploads/conferences/EuroBSDcon2012/zfs-tuning-

handout.pdf

○ Video

■ https://www.youtube.com/watch?v=PIpI7Ub6yjo

● Becoming a ZFS Ninja (Ben Rockwood):

○ http://www.cuddletech.com/blog/pivot/entry.php?id=1075

● ZFS Administration:

○ https://pthree.org/2012/12/14/zfs-administration-part-ix-copy-on-write

98

References

http://blog.vx.sk/uploads/conferences/EuroBSDcon2012/zfs-tuning-handout.pdf
https://www.youtube.com/watch?v=PIpI7Ub6yjo
http://www.cuddletech.com/blog/pivot/entry.php?id=1075
https://pthree.org/2012/12/14/zfs-administration-part-ix-copy-on-write

● https://www.freebsd.org/doc/zh_TW/books/handbook/zfs-zfs.html

● "ZFS Mastery" books (Michael W. Lucas & Allan Jude)

○ FreeBSD Mastery: ZFS

○ FreeBSD Mastery: Advanced ZFS

● ZFS for Newbies (Dan Langille)

○ https://www.youtube.com/watch?v=3oG-

1U5AI9A&list=PLskKNopggjc6NssLc8GEGSiFYJLYdlTQx&index=20

● The future of OpenZFS and FreeBSD (Allan Jude)

○ https://www.youtube.com/watch?v=gmaHZBwDKho&list=PLskKNopggjc6NssLc8GEGSiFYJL

YdlTQx&index=23

● How ZFS snapshots really work (Matt Ahrens)

○ https://www.bsdcan.org/2019/schedule/events/1073.en.html

● An Introduction to the Implementation of ZFS (Kirk McKusick)

○ https://www.bsdcan.org/2015/schedule/events/525.en.html

● https://open-zfs.org

● Boot environments: bectl(8)
99

References (c.)

https://www.freebsd.org/doc/zh_TW/books/handbook/zfs-zfs.html
https://www.youtube.com/watch?v=3oG-1U5AI9A&list=PLskKNopggjc6NssLc8GEGSiFYJLYdlTQx&index=20
https://www.youtube.com/watch?v=gmaHZBwDKho&list=PLskKNopggjc6NssLc8GEGSiFYJLYdlTQx&index=23
https://www.bsdcan.org/2019/schedule/events/1073.en.html
https://www.bsdcan.org/2015/schedule/events/525.en.html
https://open-zfs.org
https://www.freebsd.org/cgi/man.cgi?query=bectl(8)

● https://openzfs.org/wiki/OpenZFS_Developer_Summit

● Next: 2021 Nov. 8-9

● RAID-Z Expansion

● https://www.youtube.com/watch?v=yF2KgQGmUic

100

References (c.2)

https://openzfs.org/wiki/OpenZFS_Developer_Summit
https://www.youtube.com/watch?v=yF2KgQGmUic

國立陽明交通大學資工系資訊中心
Computer Center, Department of Computer Science, NYCU

Backup Slides

101

102

JBOD (Just a Bunch Of Disks)

https://zh.wikipedia.org/zh-tw/RAID

https://zh.wikipedia.org/zh-tw/RAID

103

RAID 0 (Stripe)

https://zh.wikipedia.org/zh-tw/RAID

https://zh.wikipedia.org/zh-tw/RAID

● Striping data onto multiple devices

● Increase write/read speed

● Data corrupt if ANY of the device fails

104

RAID 0 (Stripe)

105

RAID 1 (Mirror)

https://zh.wikipedia.org/zh-tw/RAID

https://zh.wikipedia.org/zh-tw/RAID

● Devices contain identical data

● 100% redundancy

● Faster read (but might be slower write)

106

RAID 1 (Mirror)

107

RAID 5

https://zh.wikipedia.org/zh-tw/RAID

https://zh.wikipedia.org/zh-tw/RAID

● Slower than RAID 0 / RAID 1

● Higher CPU usage

108

RAID 5

109

RAID 6

https://zh.wikipedia.org/zh-tw/RAID

https://zh.wikipedia.org/zh-tw/RAID

● Slower than RAID 5

● Use two different correcting algorithms

● Usually implemented via hardware

110

RAID 6

● RAID 1+0

111

RAID 10

https://zh.wikipedia.org/zh-tw/RAID

https://zh.wikipedia.org/zh-tw/RAID

112

RAID 50?

https://www.icc-usa.com/wp-content/themes/icc_solutions/images/raid-calculator/raid-50.png

https://www.icc-usa.com/wp-content/themes/icc_solutions/images/raid-calculator/raid-50.png

113

RAID60?

https://www.icc-usa.com/wp-content/themes/icc_solutions/images/raid-calculator/raid-60.png

https://www.icc-usa.com/wp-content/themes/icc_solutions/images/raid-calculator/raid-60.png

