
交大資工系資訊中心
Computer Center of Department of Computer Science, NCTU

Basic Concept of Firewall

tsaimh (2022, CC BY)
jnlin (2020-2021)
? (~ 2019)

2

Firewalls

● Firewall

○ Hardware/software

○ Choke point between secured and unsecured network

○ Filter incoming and outgoing traffic

○ Prevent communications which are forbidden by the security policy

● The usage

○ Incoming: protect and insulate the applications, services and machines

■ Such as ssh, NFS, telnet, NetBIOS(samba), internal web servers

○ Outgoing: limit or disable access from the internal network

■ Such as Line, ssh, ftp, Facebook, Online Games

○ NAT (Network Address Translation)

3

Firewalls – Capabilities
● Network Layer Firewalls

○ Operate at a low level of TCP/IP stack as IP-packet filters.

○ Filter attributes

■ Source/destination IP

■ Source/destination port

■ TTL

■ Protocols

■ …

● Application Layer Firewalls

○ Work on the application level of the TCP/IP stack.

○ Inspect all packets for improper content, a complex work!

● Application Firewalls

○ The access control implemented by applications.

○ TCP Wrapper

■ hosts.allow, hosts.deny

■ In FreeBSD: tcpd(8)

Application

Transport

Internet

Network Interface

TCP/IP

4

Firewalls – Rules
● Exclusive

○ Only block the traffic matching the rulesets

● Inclusive

○ Only allow the traffic matching the rulesets

○ Offer much better control of the incoming/outgoing traffic

○ Safer than exclusive one

■ (Y) reduce the risk of allowing unwanted traffic to pass

■ (N) increase the risk to block yourself with wrong configuration

● State

○ Stateful

■ Keep track of which connections are opened through the firewall

■ Be vulnerable to Denial of Service (DoS) attacks

○ Stateless

5

Firewalls – Packages

● Linux

○ iptables (kernel 2.4+)

○ ipchains (kernel < 2.4)

○ firewalld

○ ufw (ubuntu)

● FreeBSD

○ IPFILTER (known as IPF)

○ IPFIREWALL (known as IPFW) + Dummynet

○ Packet Filter (known as PF)+ ALTQ

■ Migrated from OpenBSD

■ http://www.openbsd.org/faq/pf/

http://www.openbsd.org/faq/pf/

交大資工系資訊中心
Computer Center of Department of Computer Science, NCTU

Basic PF in FreeBSD

● Functionality

○ Filtering packets

○ NAT

○ Load balance

○ QoS: (ALTQ: Alternate Queuing)

○ Failover (pfsync + carp)

7

Packet Filter (PF)

Not covered today

8

PF in FreeBSD – Enable pf*

● In /etc/rc.conf

○ pf_enable="YES"

○ pflog_enable="YES"

○ pfsync_enable="YES"

● Kernel configurations

○ device pf

○ device pflog

○ device pfsync

9

PF in FreeBSD – Commands and Config

● /etc/rc.d/pf

○ start / stop / restart / status / check / reload / resync

○ reboot if kernel modules is not loaded

● /etc/pf.conf

○ rules for PF

○ traffics to block/pass

○ tables to lookup

○ …

10

PF in FreeBSD – Example
macro definitions

extdev='fxp0'

server_ext='140.113.214.13'

options

set limit { states 10000, frags 5000 }

set loginterface $extdev

set block-policy drop

set skip on lo0

tables

table <badhosts> persist file "/etc/badhosts.list"

filtering rules

block in all

pass out all

antispoof for $extdev

block in log on $extdev proto tcp from any to any port {139, 445}

block in log on $extdev proto udp from any to any port {137, 138}

block quick on $extdev from <badhosts> to any

pass in on $extdev proto tcp from 140.113.0.0/16 to any port {139, 445}

pass in on $extdev proto udp from 140.113.0.0/16 to any port {137, 138}

11

PF in FreeBSD – Tool

● pfctl

○ -e / -d

■ Enable/disable

○ -F {nat | rules | state | info | Tables | all | …}

■ Flush rules

○ -v -s {nat | rules | state | info | all | Anchors | Tables | …}

■ Show current rules

○ -v -n -f /etc/pf.conf

■ Parse the rule file without actually take effect

■ Suitable for testing marcos

12

PF in FreeBSD – Tool

● pfctl

○ -t table_name -T {add | delete| test} {ip …}

■ Modify lookup table, add/remove IP addresses

○ -t table_name -T {show | kill | flush | …}

■ Show/disable/reload tables

○ -k {host | network} [-k {host | network}]

■ Kill internal state entries for given host/network

13

PF in FreeBSD – Config ordering
● Macros

○ User-defined variables, so they can be referenced and changed easily.

● Tables "table"

○ Similar to macros, but efficient and more flexible for many addresses.

● Options "set"

○ Tune the behavior of pf, default values are given.

● Normalization "scrub"

○ Reassemble fragments and resolve or reduce traffic ambiguities.

● Queueing "altq", "queue"

○ Rule-based bandwidth control.

● Translation (NAT) "rdr", "nat", "binat"

○ Specify how addresses are to be mapped or redirected to other addresses

○ First match rules

● Filtering "antispoof", "block", "pass"

○ Rule-based blocking or passing packets

○ Last match rules

14

PF in FreeBSD – Lists

● Lists

○ Allow the specification of multiple similar criteria within a rule

■ Multiple protocols, port numbers, addresses, etc.

○ Defined by specifying items within { } brackets.

○ E.g.

■ pass out on rl0 proto { tcp, udp } from { 192.168.0.1, 10.5.32.6 } to

any

■ pass in on fxp0 proto tcp to port { 22 80 }

15

PF in FreeBSD – Lists

● Lists

○ Pitfall

■ A lists will be expanded into rules.

■ Last matched rule takes effect

■ pass in on fxp0 from { 10.0.0.0/8, !10.1.2.3 }

■ You mean (It means)

1. pass in on fxp0 from 10.0.0.0/8

2. block in on fxp0 from 10.1.2.3

2. pass in on fxp0 from !10.1.2.3

■ Use table, instead.

16

PF in FreeBSD – Macros
● Macros

○ User-defined variables that can hold IP addresses, port numbers, interface

names, etc.

○ Reduce the complexity of a pf ruleset and also make maintaining a ruleset much

easier.

○ Naming: start with [a-zA-Z] and may contain [a-zA-Z0-9_]

○ E.g.

■ ext_if = "fxp0"

■ block in on $ext_if from any to any

○ Macro of macros

■ host1 = "192.168.1.1"

■ host2 = "192.168.1.2"

■ all_hosts = "{" $host1 $host2 "}"

● Macros are not expanded within quotes!

17

PF in FreeBSD – Tables (1)
● Tables

○ Used to hold a group of IPv4 and/or IPv6 addresses

■ Supports address lookup and query

■ Hostname, interface name, and keyword self

○ Lookups against a table are very fast and consume less memory and processor

time than lists

○ Two attributes

■ persist: keep the table in memory even when no rules refer to it

■ const: cannot be changed once the table is created

○ E.g.

■ table <private> const { 10/8, 172.16/12, 192.168/16 }

■ table <badhosts> persist

■ block on fxp0 from { <private>, <badhosts> } to any

■ table <spam> persist file "/etc/spammers" file "/etc/openrelays"

18

PF in FreeBSD – Tables (2)

● Tables – Address Matching

○ An address lookup against a table will return the most narrowly

matching entry

○ E.g.

■ table <goodguys> { 172.16.0.0/16, !172.16.1.0/24, 172.16.1.100 }

■ block in on dc0

■ pass in on dc0 from <goodguys>

○ Result

■ 172.16.50.5 passed

■ 172.16.1.25 blocked

■ 172.16.1.100 passed

■ 10.1.4.55 blocked

19

PF in FreeBSD – Options
● Format

○ Control pf's operation, and specified in pf.conf using "set"

■ Format: set option [sub-ops] value

● Options

○ loginterface – collect packets and gather byte count statistics

○ ruleset-optimization – ruleset optimizer

■ none, basic, profile

■ basic: remove dups, remove subs, combine into a table, re-order rules

○ block-policy – default behavior for blocked packets

■ drop, return

○ skip on {ifname} – interfaces for which packets should not be filtered.

■ E.g. set skip on lo0

○ timeout, limit, optimization, state-policy, hostid, require-order, fingerprints,

debug

20

PF in FreeBSD – Normalization

● Traffic Normalization

○ IP fragment reassembly

■ scrub in all

○ Default behavior

■ Fragments are buffered until they form a complete packet, and only the

completed packet is passed on to the filter.

■ Advantage: filter rules have to deal only with complete packets, and

ignore fragments.

■ Disadvantage: caching fragments is the additional memory cost

■ The full reassembly method is the only method that currently works

with NAT.

21

PF in FreeBSD – Packet Filtering (1)

● pf has the ability to block and pass packets based on

○ layer 3(ip, ip6) and layer 4(icmp, icmp6, tcp, udp) headers

● Each packet processed by the filter

○ The filter rules are evaluated in sequential order

○ The last matching rule decides what action is taken

○ If no rule matches the packet, the default action is to pass

● Format

○ {pass | block [drop | return]} [in | out] [log] [quick]

[on ifname] … {hosts} …

○ The simplest to block everything by default: specify the first filter rule

○ block all

22

PF in FreeBSD – Packet Filtering (2)

● States

○ If the packet is passed, state is created unless the no state is specified

■ The first time a packet matches pass, a state entry is created

■ For subsequent packets, the filter checks whether each matches any

state

■ For TCP, also check its sequence numbers

■ pf knows how to match ICMP replies to states

● Port unreachable for UDP

● ICMP echo reply for echo request

● …

■ Stores in BST for efficiency

23

PF in FreeBSD – Packet Filtering (3)

● Block policy

○ drop

■ Incoming packet is silently dropped.

○ return

■ Incoming packet is dropped

■ For TCP packets

● TCP RST is returned

■ For UDP packets

● ICMP UNREACHABLE is returned

■ For other packets

● No response is sent

24

PF in FreeBSD – Packet Filtering (3)

● Parameters

○ in | out – apply to incoming or outgoing packets

○ log - generate log messages to pflog (pflog0, /var/log/pflog)

■ Default: the packet that establishes the state is logged

○ quick – the rule is considered the last matching rule

○ on ifname – apply only on the particular interface

○ inet | inet6 – apply only on this address family

○ proto {tcp | udp | icmp | icmp6} – apply only on this protocol

25

PF in FreeBSD – Packet Filtering (4)
● Parameters

● hosts : { from host [port [op] #] to host [port [op] #] | all }

● host:

○ host can be specified in CIDR notation, hostnames, interface names, table, or keywords

any, self, …

○ Hostnames are translated to address(es) at ruleset load time.

○ When the address of an interface or hostname changes, the ruleset must be reloaded

● When interface name is surrounded by (), the rule is automatically updated whenever

the interface changes its address

● port:

○ ops: unary(=, !=, <, <=, >, >=), and binary(:, ><, <>)

● E.g.

○ block in all

○ pass in proto tcp from any port < 1024 to self port 33333:44444

26

PF in FreeBSD – Packet Filtering (5)
● Parameters

○ flags {<a>/ | any} – only apply to TCP packets

■ Flags: (F)IN, (S)YN, (R)ST, (P)USH, (A)CK, (U)RG, (E)CE, C(W)R

■ Check flags listed in , and see if the flags (not) in <a> is (not) set

■ E.g.

● flags S/S : check SYN is set, ignore others.

● flags S/SA: check SYN is set and ACK is unset., ignore others

■ Default flags S/SA for TCP

○ icmp-type type code code

○ icmp6-type type code code

○ Apply to ICMP and ICMP6 packets

○ label – for per-rule statistics

○ {tag | tagged} string

■ tag by nat, rdr, or binat, and identify by filter rules.

27

PF in FreeBSD – Stateful tracking

● Stateful tracking options

○ keep state, modulate state, and synproxy state support these options

■ keep state must be specified explicitly to apply options to a rule

○ E.g.

■ table <bad_hosts> persist

■ block quick from <bad_hosts>

■ pass in on $ext_if proto tcp to ($ext_if) port ssh keep state \

■ (max-src-conn-rate 5/30, overload <bad_hosts> flush global)

28

PF in FreeBSD – Blocking spoofed

● Blocking spoofed traffic

○ antispoof for ifname

○ antispoof for lo0

■ block drop in on ! lo0 inet from 127.0.0.1/8 to any

■ block drop in on ! lo0 inet6 from ::1 to any

○ antispoof for wi0 inet (IP: 10.0.0.1, netmask 255.255.255.0)

■ block drop in on ! wi0 inet from 10.0.0.0/24 to any

■ block drop in inet from 10.0.0.1 to any

○ Pitfall:

■ Rules created by the antispoof interfere with packets sent over loopback

interfaces to local addresses. One should pass these explicitly.

■ set skip on lo0

29

PF in FreeBSD – Example
macro definitions

extdev='fxp0'

server_ext='140.113.214.13'

options

set limit { states 10000, frags 5000 }

set loginterface $extdev

set block-policy drop

set skip on lo0

tables

table <badhosts> persist file "/etc/badhosts.list"

filtering rules

block in all

pass out all

antispoof for $extdev

block in log on $extdev proto tcp from any to any port {139, 445}

block in log on $extdev proto udp from any to any port {137, 138}

block quick on $extdev from <badhosts> to any

pass in on $extdev proto tcp from 140.113.0.0/16 to any port {139, 445}

pass in on $extdev proto udp from 140.113.0.0/16 to any port {137, 138}

30

PF in FreeBSD – Debug by pflog

● Enable pflog in /etc/rc.conf

○ pflog_enable="YES"

■ Log to pflog0 interface

■ tcpdump -i pflog0

○ pflog_logfile="/var/log/pflog"

■ tcpdump -r /var/log/pflog

● Create firewall rules

○ Default configuration rules

■ pf_rules="/etc/pf.conf"

○ Sample files

■ /usr/share/examples/pf/*

交大資工系資訊中心
Computer Center of Department of Computer Science, NCTU

iptables in Linux

31

32

iptables

● User-space software that control Linux kernel firewall

○ Control Linux kernel Netfilter modules

● Support kernel version 2.4+

○ Replace ipchains and ipfwadm

● iptables allows system administrators to define tables containing

chains of rules for the treatment of packets

33

iptables

● In SA, we only cover high level idea of iptables

● Detailed configuration and usage are covered in NA

34

iptables - filtering

● Main command: iptables

● Almost everything is done by it

● iptables content for new machine (ubuntu)

○ iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

35

iptables – List

● iptables

○ -t tables : Target table

○ -L : List all rules

○ -n : Don't lookup domain names

○ -v : Show details
$ sudo iptables -L -n

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 ctstate RELATED,ESTABLISHED

DOCKER all -- 0.0.0.0/0 0.0.0.0/0

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

36

iptables – Init

● iptables

○ -F : Flush all rules

○ -X : Flush all custom chains

○ -Z : Flush all statistics data for all chains

● iptables

○ -P [INPUT,OUTPUT,FORWARD] [ACCEPT, DROP]

■ Change the default policy of the target chain

37

iptables – Save and Restore
● iptables-restore

○ Restore from restore file

● iptables-save

○ Export all rules and generate restore file

○ Some system will load restore file at boot

■ E.g.: CentOS /etc/sysconfig/iptables /etc/sysconfig/ip6tables

● Restore file syntax

○ # comments

○ * table name

○ : chain default-policy [pkt:byte]

○ Rules

○ COMMIT (End of file)

*filter

:INPUT ACCEPT [8:1468]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [855:500357]

:BLOCK - [0:0]

:WORKSTATON-INPUT - [0:0]

:cs-firewall - [0:0]

-A INPUT -i lo -j ACCEPT

-A INPUT -s 10.1.0.0/16 -j ACCEPT

-A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

COMMIT

38

iptables – Rules (1/2)

● Modify

○ -A, --append

○ -C, --check

○ -D, --delete

○ -I, --insert

○ -R, --replace

39

iptables – Rules (2/2)
● Filter

○ -i, -o [if] : incoming interface / outgoing interface

■ -i ens192 -o docker0

○ -s, -d [net] : Source / Destination

■ -s 192.168.0.1/24 –d 140.113.1.1

○ --sport, --dport [port] : Source port / Destination port

■ --sport 22 --dport 80

○ -p [protocol] : tcp, udp, icmp, all

■ -p icmp

○ -j [target]: target for matched packets

■ -j ACCEPT, -j DROP

○ ! (not) : Invert matching

■ ! -s 140.113.1.0/24

■ ! -i eth0

■ ! -p udp

40

Example

● Allow all packets from 192.168.1.0/24 on eth0

○ iptables -A INPUT -i eth0 -p tcp -s 192.168.1.0/24 -j ACCEPT

● Drop packets from 192.168.1.25

○ iptables -A INPUT -i eth0 -p tcp -s 192.168.1.25 -j DROP

41

Other tools

● These tools help user to manage iptables rules

○ UFW (Uncomplicated Firewall) (Ubuntu)

■ Easy to use

■ Hard to customize

○ Firewalld (Redhat)

■ Another way to manage your firewall

● Sometime even with these tools, you still need to understand

iptables, otherwise you cannot manage complicated firewall rules

like docker network, kubernetes

