
國立陽明交通大學資工系資訊中心
Information Technology Center of Department of Computer Science, NYCU

File System

tsaimh (2022-2024, CC BY-SA)
jnlin(2019-2021, CC BY-SA)
? (1996-2018)

2

Handbook and Manual pages

● Official guide and be found at

○ https://www.freebsd.org/doc/en/books/handbook/permissions.html

https://www.freebsd.org/doc/en/books/handbook/permissions.html

3

Files

● $ ls -l

drwx--x--x 7 tsaimh dcs 1024 Sep 22 17:25 public_html

File Type d

File Access Mode rwx--x--x

inodes 7

File User Owner tsaimh

File Group Owner dcs

File Size 1024

File Last Modify Time Sep 22 17:25

File Name public_html

4

Outline

● File System Architecture

○ Pathname

○ File Tree

○ Mounting

○ File Types

● inode and file

○ Link

● File Access Mode

○ Changing File Owner

○ FreeBSD bonus flags

● Application Kernel Hardware

○ Applications call system-calls to request service

○ Kernel invokes corresponding drivers to fulfill this service

．．．
5

File System Architecture (1)

Process 1 Process 2 Process N

Virtual file system

msdos minix proc

Buffer cache

Device drives

ext2

．．．

．．．

File system

User mode

System mode

(Kernel mode)

6

File System Architecture (2)

● The basic purpose of filesystem

○ Represent and organize the system’s storage

○ Four main components:

■ Namespace

● A way of naming things and arranging them in a hierarchy

■ Application Programming Interface (API)

● A set of system calls for navigating and manipulating nodes

■ Security model

● A scheme for protecting, hiding and sharing things

■ Implementation

● Code that ties the logical model to an actual disk

7

File System Architecture (3)

● System call sequence to copy the contents of one file to another file

$ cp file1 file2

Source file destination file

Example System Call Sequence

Open the input file

if file doesn't exist, abort

Create output file

if file exists, overwrite it

Loop

Read from input file

Write to output file

Until read EOF

Close input and output files

Write completion message to screen

Terminate normally

❑ API – System Call – OS Relationship

8

File System Architecture (4)

user application

system call interface

open ()

user

mode

kernel

mode

.

.

i

.

.

open()

implementaion of open()

systme call

.

.

return

9

File System Architecture (5)

● Objects in the filesystem:

○ What you can find in a filesystem:

■ Files and directories

■ Hardware device files

■ Processes information

■ Interprocess communication channel (IPC)

■ Shared memory segments (SHM)

○ We can use common file system interface to access such "object"

■ open、read、write、close、seek、ioctl, fcntl, …

10

Pathname

● Two kinds of path

○ Absolute path → start from /

■ E.g. /net/dcs/93/9317807/test/haha.c

○ Relative path → start from your current directory

■ E.g. test/haha.c

● Constraints of pathname

○ Single component: ≦ 255 characters

○ Single absolute path: ≦ 1023 characters

11

File Tree
/

/bin /dev /etc /sbin /home /lost+found /mnt /proc /tcb /tmp /usr /var /stand

dsk

pts

rdsk

rmn

term

auth

default

init.d

rc0.d

rc2.d

rc3.d

skel

man

bin

x11

cron

lock

ip

mail

mqueue

uucp

uucppublic

bin games

include lib

local sbin

share ucb

adm cron

mail netls

news opt

preserve spool

tmp yp

12

Layout of File Systems (1)

● hier(7)

Path Name Contents

/ The root directory of the file system

/bin & /sbin User utilities & system programs fundamental to both single-user and multi-user environments

/usr User utilities and applications

/usr/bin & /usr/sbin Local executable

/lib Shared and archive libraries

/libexec Critical system utilities needed for binaries in /bin and /sbin

/mnt Empty directory commonly used by system administrators as a temporary mount point

/tmp Temporary files that are not guaranteed to persist across system reboots. Also, there is /var/tmp

/usr/lib Support libraries for standard UNIX programs

/usr/libexec System daemons & system utilities (executed by other programs)

/usr/include Libraries Header files

/usr/local Local executables, libraries, etc

https://www.freebsd.org/cgi/man.cgi?hier(7)

13

Layout of File Systems (2)
Path Name Contents

/usr/src BSD, third-party, and/or local source files

/usr/obj Architecture-specific target tree produced by building the /usr/src tree

/etc System configuration files and scripts

/usr/local/etc /etc of /usr/local, mimics /etc

/dev Device entries for disks, terminals, modems, etc

/proc Images of all running process

/var Multi-purpose log, temporary, transient, and spool files

/var/db Database files

/var/db/pkg &

/var/db/ports

Ports Collection management files. ports(7)

/var/log Various system log files

/var/mail User mailbox files

/var/spool Spooling directories for printers, mails, etc

14

Mounting file system (1)
● mount(8)

● Common types of file systems

○ Most are disk partitions

○ Network file servers

○ Memory disk emulators

○ Kernel components

○ Etc,…

● "mount" command

○ Map the mount point of the existing file tree to the root of the newly

attached filesystem

○ $ mount /dev/ad2s1e /home2

○ The previous contents of the mount point become inaccessible

https://www.freebsd.org/cgi/man.cgi?mount(8)

15

Mounting file system (2)

16

Mounting file system (3)

● fstab(5)

● Filesystem table – fstab

○ Automatically mounted at boot time

○ /etc/fstab

■ Filesystem in this file will be checked and mounted automatically at

boot time

E.g.

Device Mountpoint FStype Options Dump Pass#

/dev/ad0s1a / ufs rw 1 1

/dev/ad0s1b none swap sw 0 0

https://www.freebsd.org/cgi/man.cgi?fstab(5)

17

Mounting file system (4)

● umount(8)

● Unmounting file system

○ "umount" command

■ $ umount { node | device }

● Ex:

○ Busy file system

■ Someone’s current directory is there or there are opened files

■ Use "umount -f"

■ We can use "lsof" or "fstat" like utilities to figure out who makes it

busy

umount /home umount /dev/ad0s1e

https://www.freebsd.org/cgi/man.cgi?umount(8)

18

Mounting file system (5)

● fstat(1)

● lsof(8) (/usr/ports/sysutils/lsof) – list open files

$ fstat

USER CMD PID FD MOUNT INUM MODE SZ|DV R/W

tsaimh fstat 94218 wd / 234933 drwxr-xr-x 16 r

root screen 87838 4 /tmp 9947 prwx------ 0 r

$ lsof

COMMAND PID USER FD TYPE SIZE/OFF NODE NAME

screen 87838 root cwd VDIR 7 522069 /usr/ports/sysutils/screen

screen 87838 root rtd VDIR 26 3 /

screen 87838 root txt VREG 337968 424757 /usr/local/bin/screen

screen 87838 root txt VREG 245976 679260 /libexec/ld-elf.so.1

screen 87838 root txt VREG 314504 678109 /lib/libncurses.so.8

screen 87838 root txt VREG 64952 678438 /lib/libutil.so.8

screen 87838 root txt VREG 33536 677963 /lib/libcrypt.so.5

https://www.freebsd.org/cgi/man.cgi?fstat(1)
https://www.freebsd.org/cgi/man.cgi?lsof(8)

19

File Types (1)

● File types

Symbol File types

- Regular file

b Block device file

c Character device file

d Directory

l Symbolic link

s UNIX domain socket

p Named pipe

20

File Types (2)

● file command

○ determine file type

■ $ file .tcshrc

.tcshrc: ASCII text

■ $ file /bin

/bin: directory

■ $ file /bin/sh

/bin/sh: ELF 32-bit LSB executable, Intel 80386, version 1 (FreeBSD),

dynamically linked (uses shared libs), stripped

○ /usr/ports/sysutils/file

21

File Types (3)

● Directory

○ . and ..

○ mkdir / rmdir

22

File Types (4)

● UNIX domain socket

○ Created by socket()

○ Local to a particular host

○ Be referenced through a filesystem object rather than a network port

Process A Process B

Unix kernel

Socket buffer

Writes data Reads data

23

File Types (5)
● Pipes

○ Let two processes do "FIFO" communication

User Process

fd[1]fd[0]

Pipe

Kernel

Parent

fd[1]fd[0]

Child

fd[1]fd[0]

Pipe

Fork

User Process

fd[1]

Pipe

Kernel

Child

fd[0]

24

File Types (6)

● Named Pipe

○ $ mkfifo [-m mode] fifo_name ...

○ $ mkfifo pipe

○ $ du >> pipe

(another process)

○ $ sort -n pipe

25

File Types (7)

● Symbolic Link

○ A file which points to another pathname

○ $ ln -s ori-file soft-file

○ Like "short-cut" in Windows

26

inode and file (1)
● inode

○ A structure that records information of a file

■ You can use "ls -i" to see each file’s inode number

$ ls -i
mode

owners(2)

timestamps(3)

size block

count

direct blocks

single indirect

double indirect

triple indirect

data

data

data

...
... data

...
data

data

...

...
...

data

data

data

data

27

inode and file (2)
● A Unix partition consists of four major components:

○ The boot block contains the bootstrap program used to load the

operating system.

○ The super block describes the state of the file system (e.g., total size

of the partition, block size, inode number of the root directory)

○ Inode list contains a linear array of inodes. While users think of files

in terms of file names, Unix thinks of files in terms of inodes.

○ Data blocks containing the actual contents of files.

partition Boot block Super block Inode list

Data blocks

…

Boot Stage 1 (+ 2)

28

inode and file (3)

● More details of inode and data block

i-list
data

block

data

block

directory

block

data

block

directory

block

directory blocks and data blocks

i-node i-node i-node i-node

first data block second data block third data block

i-ndoe number filename

i-ndoe number filename

29

inode and file (4)

● Example

○ .

○ ..

○ testdir

i-list
directory

block

directory

block

directory blocks and data blocks

i-node

0

i-node

1267

i-node

2549

2549 .

1267 ..
1267 .

i-node

number
..

2549 testdir

data block

data block

30

Hard Link vs. Symbolic Link (1)

● Link

○ Hard link

■ Associate two or more filenames with the same inode

● Must in the same partition

■ $ ln ori-file hard-file

○ Soft (symbolic) link

■ A file which points to another pathname

■ $ ln -s ori-file soft-file

31

Hard Link vs. Symbolic Link (2)

(A)

$ touch myfile

$ ln myfile hardlink

$ ln –s myfile symlink

(B)

$ rm myfile

(C)

$ touch myfile

32

File Access Mode (1)

● rwx r-x r-x

○ User, group, other privileges

● chmod command

○ chmod(1), "MODES" section

○ $ chmod access-string file

■ $ chmod u+x test.sh

■ $ chmod go-w .tcshrc

■ $ chmod u+w,g-w hehe haha

■ $ chmod –R 755 public_html/

33

File Access Mode (2)

● setuid, setgid, sticky bit

○ setuid, setgid on file

■ The effective uid/gid of resulting process will be set to the UID/GID of

the file

■ setuid

passwd, chsh, crontab

■ setgid

write

34

File Access Mode (3)

● setgid on directory

○ Cause newly created files within the directory to be the same group

as directory

● sticky on directory (/tmp)

○ Do not allow to delete or rename a file unless you are

■ The owner of the file

■ The owner of the directory

■ root

35

File Access Mode (4)

● Decimal argument of chmod

○ setuid: 4000

○ setgid: 2000

○ sticky : 1000

Mode Attribute Mode Attribute

755 - rwx r-x r-x 644 - rw- r-- r--

4755 - rws r-x r-x 600 - rw- --- ---

2755 - rwx r-s r-x 444 - r-- r-- r--

2775 d rwx rws r-x 1777 d rwx rwx rwt

755 d rwx r-x r-x 4555 - r-s r-x r-x

750 d rwx r-x --- 711 - rwx --x --x

700 d rwx --- --- 711 d rwx --x --x

36

File Access Mode (5)

● Assign default permissions: umask

○ Shell built-in command

○ Inference the default permissions given to the files newly created.

○ The newly created file permission:

○ Use full permission bit (file: 666, dir: 777) & (!umask) value.

○ Ex: umask New File New Dir

022 - rw- r-- r-- d rwx r-x r-x

033 - rw- r-- r-- d rwx r-- r--

066 - rw- --- --- d rwx --x --x

000 - rw- rw- rw- d rwx rwx rwx

277 - r-- --- --- d r-x --- ---

777 - --- --- --- d --- --- ---

37

File Protection

Command
Minimum Access Needed

On file itself On directory

cd /home/test x

ls /home/test r

ls -s /home/test/*.c rx

cat runme r x

cat >> runme w x

run-binary x x

run-script rx x

rm rumme wx

● Changing File Owner

○ Commands:

■ chown(8) -- change user owner

■ chgrp(1) -- change group owner

● Change the file ownership and group ownership

38

Changing File Owner

$ chown -R tsaimh /home/tsaimh

$ chown -R tsaimh:dcs /home/tsaimh

$ chown -R :dcs /home/tsaimh

$ chgrp -R dcs /home/tsaimh

https://www.freebsd.org/cgi/man.cgi?chown(8)
https://www.freebsd.org/cgi/man.cgi?chgrp

39

FreeBSD bonus flags (1)

● chflags(1) command

○ schg system immutable flag (root only)

○ sunlnk system undeletable flag (root only)

○ sappnd system append-only flag (root only)

○ uappend user append-only flag (root, user)

○ uunlnk user undeletable flag (root, user)

● ls -ol

$ ls -ol /libexec/

total 1034

-r-xr-xr-x 1 root wheel schg 238472 Sep 21 12:50 ld-elf.so.1*

-r-xr-xr-x 1 root wheel - 238512 Jul 24 17:15 ld-elf.so.1.old

-r-xr-xr-x 1 root wheel schg 212204 Sep 21 12:51 ld-elf32.so.1

-r-xr-xr-x 1 root wheel - 212248 Jul 24 17:17 ld-elf32.so.1.old

https://www.freebsd.org/cgi/man.cgi?chflags(1)

40

FreeBSD bonus flags (2)

$ ls -al > file

$ chflags uappend file

$ ls -al > file

file: Operation not permitted.

$ ls -al >> file

$ ls -ol

total 2

-rw-r--r-- 1 tsaimh dcs uappnd 325 9 4 16:14 file

$ cat file

total 8

drwxr-xr-x 2 tsaimh dcs 512 9 4 16:13 .

drwxr-xr-x 49 tsaimh dcs 4608 9 4 16:13 ..

-rw-r--r-- 1 tsaimh dcs 0 9 4 16:13 file

total 10

drwxr-xr-x 2 tsaimh dcs 512 9 4 16:13 .

drwxr-xr-x 49 tsaimh dcs 4608 9 4 16:13 ..

-rw-r--r-- 1 tsaimh dcs 162 9 4 16:13 file

國立陽明交通大學資工系資訊中心
Information Technology Center of Department of Computer Science, NYCU

Appendix

42

Journaling File System

● Write operational logs to the journal first, then commit it

asynchronously.

● If system crashed, check the log

○ fully committed: skip

○ partial committed: rollback or commit

○ non-committed: ignore or commit

● Reduce "fsck" time and data inconsistency

● Example

○ ext3, ext4

○ xfs

○ btrfs

43

CoW (Copy on Write) File System

● If some data is copied but not modified, they will be referred to the

same physical address in the storage

● Pros

○ Reduce the space used

○ Low cost snapshots

● Cons

○ Data inconsistency (for example, the reference count is not

consistent)

○ Not "real" used space on file

● Example

○ ZFS deduplication

44

File Attribute Extension

● Associate files with metadata not interpreted by the filesystem

● Key-value pairs, saved in the inode

● Example

○ mime_type

○ md5/sha1 checksum

○ security attributes

	Slide 1: File System
	Slide 2: Handbook and Manual pages
	Slide 3: Files
	Slide 4: Outline
	Slide 5: File System Architecture (1)
	Slide 6: File System Architecture (2)
	Slide 7: File System Architecture (3)
	Slide 8: File System Architecture (4)
	Slide 9: File System Architecture (5)
	Slide 10: Pathname
	Slide 11: File Tree
	Slide 12: Layout of File Systems (1)
	Slide 13: Layout of File Systems (2)
	Slide 14: Mounting file system (1)
	Slide 15: Mounting file system (2)
	Slide 16: Mounting file system (3)
	Slide 17: Mounting file system (4)
	Slide 18: Mounting file system (5)
	Slide 19: File Types (1)
	Slide 20: File Types (2)
	Slide 21: File Types (3)
	Slide 22: File Types (4)
	Slide 23: File Types (5)
	Slide 24: File Types (6)
	Slide 25: File Types (7)
	Slide 26: inode and file (1)
	Slide 27: inode and file (2)
	Slide 28: inode and file (3)
	Slide 29: inode and file (4)
	Slide 30: Hard Link vs. Symbolic Link (1)
	Slide 31: Hard Link vs. Symbolic Link (2)
	Slide 32: File Access Mode (1)
	Slide 33: File Access Mode (2)
	Slide 34: File Access Mode (3)
	Slide 35: File Access Mode (4)
	Slide 36: File Access Mode (5)
	Slide 37: File Protection
	Slide 38: Changing File Owner
	Slide 39: FreeBSD bonus flags (1)
	Slide 40: FreeBSD bonus flags (2)
	Slide 41: Appendix
	Slide 42: Journaling File System
	Slide 43: CoW (Copy on Write) File System
	Slide 44: File Attribute Extension

